Giải bài tập Tài liệu Dạy - học Toán lớp 8, Phát triển tư duy đột phá trong dạy học Toán 8
Luyện tập - Chủ đề 2 : Phân tích đa thức thành nhân tử
Luyện tập 6 trang 35 Tài liệu dạy – học Toán 8 tập 1>
Giải bài tập Chứng minh rằng hiệu các bình phương của hai số lẻ liên tiếp thì chia hết cho 8.
Đề bài
Chứng minh rằng hiệu các bình phương của hai số lẻ liên tiếp thì chia hết cho 8.
Lời giải chi tiết
Gọi hai số lẻ liên tiếp đó là \(2k + 1;\,\,2k + 3\) (với \(k \in Z\))
Hiệu các bình phương của hai số đó là:
\(\eqalign{ & \,\,\,{\left( {2k + 3} \right)^2} - {\left( {2k + 1} \right)^2} \cr & = \left[ {\left( {2k + 3} \right) - \left( {2k + 1} \right)} \right]\left[ {\left( {2k + 3} \right) + \left( {2k + 1} \right)} \right] \cr & = \left( {2k + 3 - 2k - 1} \right)\left( {2k + 3 + 2k + 1} \right) \cr & = 2\left( {4k + 4} \right) \cr & = 8\left( {k + 1} \right) \cr} \)
Vì \(8\left( {k + 1} \right)\) chia hết cho 8 nên \({\left( {2k + 3} \right)^2} - {\left( {2k + 1} \right)^2}\) chia hết cho 8.
Vậy hiệu các bình phương của hai số lẻ liên tiếp thì chia hết cho 8.
Loigiaihay.com




