Bài 1.9 trang 21 SGK Toán 11 tập 1 - Kết nối tri thức


Tính (sin 2a,cos 2a,tan 2a,;)biết: a) (sin a = frac{1}{3}) và (frac{pi }{2} < a < pi );

Đề bài

Tính \(\sin 2a,\cos 2a,\tan 2a,\;\)biết:

a) \(\sin a = \frac{1}{3}\) và \(\frac{\pi }{2} < a < \pi \);                 

b) \(\sin a + \cos a = \frac{1}{2}\) và \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\).

Phương pháp giải - Xem chi tiết

- Từ hệ thức lượng giác cơ bản là mối liên hệ giữa hai giá trị lượng giác, khi biết một giá trị lượng giác ta sẽ suy ra được giá trị còn lại. Cần lưu ý tời dấu của giá trị lượng giác để chọn cho phù hợp

- Sử dụng các hằng đẳng thức đáng nhớ.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\)

Ta có: \({\sin ^2}a + {\cos ^2}a  = 1\)

 \(\Leftrightarrow \frac{1}{9} + {\cos ^2}a  = 1\)

\(\Leftrightarrow {\cos ^2}a =  1 - \frac{1}{9}= \frac{8}{9}\)

\(\Leftrightarrow \cos a  =\pm\sqrt { \frac{8}{9}}  =  \pm \frac{{2\sqrt 2 }}{3}\)

Vì \(\cos a < 0\) nên \(cos a =-\frac{{2\sqrt 2 }}{3}\)

Suy ra \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} =  - \frac{{\sqrt 2 }}{4}\)

Ta có: \(\sin 2a = 2\sin a\cos a = 2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) =  - \frac{{4\sqrt 2 }}{9}\)

\(\cos 2a = 1 - 2{\sin ^2}a = 1 - \frac{2}{9} = \frac{7}{9}\)

\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.\left( { - \frac{{\sqrt 2 }}{4}} \right)}}{{1 - {{\left( { - \frac{{\sqrt 2 }}{4}} \right)}^2}}} =  - \frac{{4\sqrt 2 }}{7}\)

b) Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\sin a > 0,\cos a < 0\)

\({\left( {\sin a + \cos a} \right)^2} = {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = 1 + 2\sin a\cos a = \frac{1}{4}\)

Suy ra \(\sin 2a = 2\sin a\cos a = \frac{1}{4} - 1 =  - \frac{3}{4}\)

Ta có: \({\sin ^2}a + {\cos ^2}a = 1\;\)

\( \Leftrightarrow \left( {\frac{1}{2} - {\cos }a} \right)^2 + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow \frac{1}{4} - \cos a + {\cos ^2}a + {\cos ^2}a - 1 = 0\)

\( \Leftrightarrow 2{\cos ^2}a - \cos a - \frac{3}{4} = 0\)

\( \Rightarrow \cos a = \frac{{1 - \sqrt 7 }}{4}\) (Vì \(\cos a < 0)\)

\(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{{1 - \sqrt 7 }}{4}} \right)^2} - 1 =  - \frac{{\sqrt 7 }}{4}\)

\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{{3\sqrt 7 }}{7}\)


Bình chọn:
4.2 trên 19 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí