Lý thuyết Tính đơn điệu và cực trị của hàm số Toán 12 Chân trời sáng tạo>
Bài 1. Tính đơn điệu và cực trị của hàm số 1. Tính đơn điệu của hàm số
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
1. Tính đơn điệu của hàm số
Định lý 1
Cho hàm số y = f(x) có đạo hàm trên K
|
Chú ý:
a) Nếu hàm số y = f(x) có đạo hàm trên K, f’(x) 0 với mọi x thuộc K và f’(x) = 0 chỉ tại một số hữa hạn điểm của K thì hàm số f(x) đồng biến trên K.
b) Nếu hàm số y = f(x) có đạo hàm trên K, f’(x) 0 với mọi x thuộc K và f’(x) = 0 chỉ tại một số hữa hạn điểm của K thì hàm số f(x) nghịch biến trên K.
c) Nếu f’(x) = 0 với mọi x thuộc K thì hàm số không đổi trên K.
2. Cực trị của hàm số
Khái niệm cực trị của hàm số
Cho hàm số y = f(x) liên tục trên tập \(K \subset R\), trong đó K là một khoảng, đoạn hoặc nửa khoảng và \({x_0} \in K,{x_1} \in K\)
|
Định lý
Giả sử hàm số y = f(x) liên tục trên khoảng (a;b) chứa điểm \({x_0}\) và có đạo hàm trên các khoảng \(\left( {a;{x_0}} \right)\) và \(\left( {{x_0};b} \right)\). Khi đó: a) Nếu f’(x) < 0 với mọi \(x \in \left( {a;{x_0}} \right)\) và f’(x) > 0 với mọi \(x \in \left( {{x_0};b} \right)\) thì hàm số f(x) đạt cực tiểu tại điểm \({x_0}\) b) Nếu f’(x) > 0 với mọi \(x \in \left( {a;{x_0}} \right)\) và f’(x) < 0 với mọi \(x \in \left( {{x_0};b} \right)\) thì hàm số f(x) đạt cực tiểu tại điểm \({x_0}\) |
- Giải mục 1 trang 6, 7, 8 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải mục 2 trang 10, 11, 12 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 1 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 3 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 4 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo