Giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo


Xét một chất điểm chuyển động dọc theo trục (Ox). Toạ độ của chất điểm tại thời điểm (t) được xác định bởi hàm số (x(t) = {t^3} - 6{t^2} + 9t) với (t ge 0). Khi đó (x'(t)) là vận tốc của chất điểm tại thời điểm (t), kí hiệu (v(t)); (v'(t)) là gia tốc chuyển động của chất điểm tại thời điểm (t), kí hiệu (a(t)). a) Tìm các hàm (v(t))và (a(t)) b) Trong khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm?

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

 

 

Xét một chất điểm chuyển động dọc theo trục \(Ox\). Toạ độ của chất điểm tại thời điểm \(t\) được xác định bởi hàm số \(x(t) = {t^3} - 6{t^2} + 9t\) với \(t \ge 0\). Khi đó \(x'(t)\) là vận tốc của chất điểm tại thời điểm \(t\), kí hiệu \(v(t)\); \(v'(t)\) là gia tốc chuyển động của chất điểm tại thời điểm \(t\), kí hiệu \(a(t)\).
a) Tìm các hàm \(v(t)\)và \(a(t)\)
b) Trong khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm?

 

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính đạo hàm, xét dấu đạo hàm

 

Lời giải chi tiết

a) \(v(t) = x'(t) = 3{t^2} - 12t + 9\)

\(a(t) = v'(t) = 6t - 12\)

b) Tập xác định: \(D = [0; + \infty ]\)

\(a(t) = 0 \Leftrightarrow t = 2\)

Bảng biến thiên:

Vậy trong khoảng từ t = 0 đến t = 2 thì vận tốc của chất điểm giảm, từ t = 2 trở đi thì vận tốc của chất điểm tăng

 

Bình chọn:
3.8 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí