Giải bài tập 6.51 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức


Bác Hương gửi tiết kiệm ngân hàng 100 triệu đồng với kì hạn 12 tháng. Sau một năm, do chưa có nhu cầu sử dụng nên bác chưa rút sổ tiết kiệm này ra mà gửi tiếp và gửi thêm một sổ tiết kiệm mới với số tiền 50 triệu đồng, cũng với kì hạn 12 tháng. Sau hai năm (kể từ khi gửi lần đầu), bác Hương nhận được số tiền cả vỗn lẫn lãi là 176 triệu đồng. Tính lãi suất năm của hình thức gửi tiết kiệm này (giả sử lãi suất không đổi trong suốt quá trình gửi).

Đề bài

Bác Hương gửi tiết kiệm ngân hàng 100 triệu đồng với kì hạn 12 tháng. Sau một năm, do chưa có nhu cầu sử dụng nên bác chưa rút sổ tiết kiệm này ra mà gửi tiếp và gửi thêm một sổ tiết kiệm mới với số tiền 50 triệu đồng, cũng với kì hạn 12 tháng. Sau hai năm (kể từ khi gửi lần đầu), bác Hương nhận được số tiền cả vỗn lẫn lãi là 176 triệu đồng. Tính lãi suất năm của hình thức gửi tiết kiệm này (giả sử lãi suất không đổi trong suốt quá trình gửi).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Các bước giải một bài toán bằng cách lập phương trình:

Bước 1. Lập phương trình:

- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

- Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình.

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Lời giải chi tiết

Gọi x là lãi suất gửi tiết kiệm của bác Hương (x được cho dưới dạng số thập phân), điều kiện: \(x > 0\).

Số tiền lãi thu được sau kì gửi thứ nhất là: \(100 + 100x = 100\left( {1 + x} \right)\) (triệu đồng).

Số tiền cả vốn lẫn lãi bác Hương thu được sau kì gửi thứ hai với 100 triệu đồng là:

\(100\left( {1 + x} \right) + \left[ {100\left( {1 + x} \right)} \right]x = 100\left( {1 + x} \right)\left( {1 + x} \right) = 100{\left( {x + 1} \right)^2}\) (triệu đồng).

Với 50 triệu đồng bác gửi thêm, thì sau 1 năm bác thu được số tiền cả vốn lẫn lãi là: \(50 + 50x = 50\left( {1 + x} \right)\) (triệu đồng).

Vì sau hai năm (kể từ khi gửi lần đầu), bác Hương nhận được số tiền cả vỗn lẫn lãi là 176 triệu đồng nên ta có phương trình: \(100{\left( {x + 1} \right)^2} + 50\left( {1 + x} \right) = 176\)

\(100{x^2} + 250x - 26 = 0\)

\(50{x^2} + 125x - 13 = 0\)

Vì \(\Delta  = {125^2} - 4.50.\left( { - 13} \right) = 18\;225 > 0 \Rightarrow \sqrt \Delta   = 135\) nên phương trình có hai nghiệm phân biệt \({x_1} = \frac{{ - 125 + 135}}{{2.50}} = 0,1\left( {tm} \right);{x_1} = \frac{{ - 125 - 135}}{{2.50}} =  - 2,6\left( {ktm} \right)\)

Vậy lãi suất năm của hình thức gửi tiết kiệm này là 10%.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí