Giải bài tập 5.6 trang 90 SGK Toán 9 tập 1 - Kết nối tri thức


Cho đường tròn (O; 5 cm) và AB là một dây bất kì của đường tròn đó. Biết AB = 6 cm. a) Tính khoảng cách từ O đến đường thẳng AB. b) Tính(tan alpha )nếu góc ở tâm chắn cung AB bằng (2alpha .)

Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - KHTN - Lịch sử và Địa lí

Đề bài

Cho đường tròn (O; 5 cm) và AB là một dây bất kì của đường tròn đó. Biết AB = 6 cm.

a) Tính khoảng cách từ O đến đường thẳng AB.

b) Tính\(\tan \alpha \)nếu góc ở tâm chắn cung AB bằng \(2\alpha .\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Gọi H là trung điểm của AB, chứng minh \(OH \bot AB\) hay khoảng cách từ O đến đường thẳng AB bằng độ dài đoạn OH. Sau đó áp dụng định lý Pythagore để tính OH.

b) \(\widehat {AOB} = 2\alpha\) suy ra \( \alpha  = \widehat {HOA}\). Xét tam giác OAH để tính \(\tan \alpha .\)

Lời giải chi tiết

a) Kẻ \( OH \bot AB\).

Ta có \(\Delta AOB\) cân tại O (OA = OB), OH là đường cao nên OH cũng là đường trung tuyên của \(\Delta OAB\)

Suy ra H là trung điểm của AB nên \(AH = HB = 3cm\)

Xét \(\Delta AHO\) vuông tại H, áp dụng định lý Pythagore, ta có:

\(OH = \sqrt{OA^2-AH^2} = \sqrt{5^2-3^2}= 4 (cm)\) 

Vậy khoảng cách từ O đến AB là 4cm.

b) Ta có: \(\widehat{AOB} = 2\alpha \).

OH là đường cao của tam giác AOB cân tại O nên OH cũng là đường phân giác của \(\widehat{AOB}\)

Suy ra \(\widehat {AOH} = \widehat{BOH} = \alpha\)

Tam giác AOH vuông tại H nên ta có:

\(tan\alpha = \frac{AH}{OH} = \frac{3}{4}\)


Bình chọn:
4.3 trên 12 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí