Giải bài tập 5 trang 95 SGK Toán 12 tập 2 - Cánh diều>
Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp. Xét các biến cố: A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”; B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”. Chứng minh rằng A, B là hai biến cố độc lập.
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp. Xét các biến cố:
A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”;
B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.
Chứng minh rằng A, B là hai biến cố độc lập.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, kí hiệu là P(A|B). Nếu \(P\left( B \right) > 0\) thì \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).
Sử dụng kiến thức về hai biến cố độc lập để chứng minh: Cho hai biến cố A và B với \(0 < P\left( A \right),P\left( B \right) < 1\). Khi đó, A và B là hai biến cố độc lập khi và chỉ khi \(P\left( A \right) = P\left( {A|B} \right) = P\left( {A|\overline B } \right)\) và \(P\left( B \right) = P\left( {B|A} \right) = P\left( {B|\overline A } \right)\).
Lời giải chi tiết
Xác suất của biến cố A là: \(P\left( A \right) = \frac{{3.7}}{{7.7}} = \frac{3}{7}\). Suy ra \(P\left( {\overline A } \right) = \frac{4}{7}\).
Xác suất của biến cố B là: \(P\left( B \right) = \frac{{7.4}}{{7.7}} = \frac{4}{7}\). Suy ra, \(P\left( {\overline B } \right) = \frac{3}{4}\).
Biến cố \(A \cap B\): “Lấy ra bóng màu xanh được lấy ra ở lần thứ nhất và bóng màu đỏ ở lần thứ hai”. Suy ra \(P\left( {A \cap B} \right) = \frac{{3.4}}{{7.7}} = \frac{{12}}{{49}}\). Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{{12}}{{49}}}}{{\frac{4}{7}}} = \frac{3}{7}\)
Biến cố \(A \cap \overline B \): “Lấy ra bóng màu xanh được lấy ra ở cả hai lần”. Suy ra \(P\left( {A \cap \overline B } \right) = \frac{{3.3}}{{7.7}} = \frac{9}{{49}}\). Khi đó, \(P\left( {A|\overline B } \right) = \frac{{P\left( {A \cap \overline B } \right)}}{{P\left( {\overline B } \right)}} = \frac{{\frac{9}{{49}}}}{{\frac{3}{7}}} = \frac{3}{7}\).
Do đó, ta có: \(P\left( A \right) = P\left( {A|B} \right) = P\left( {A|\overline B } \right) = \frac{3}{7}\left( 1 \right)\).
Lại có: \(P\left( {B|A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{{12}}{{49}}}}{{\frac{3}{7}}} = \frac{4}{7},P\left( {B|\overline A } \right) = \frac{{P\left( {\overline A \cap B} \right)}}{{P\left( {\overline A } \right)}} = \frac{{\frac{{4.4}}{{49}}}}{{\frac{4}{7}}} = \frac{4}{7}\).
Do đó, \(P\left( B \right) = P\left( {B|A} \right) = P\left( {B|\overline A } \right) = \frac{4}{7}\left( 2 \right)\).
Từ (1) và (2) suy ra A và B là hai biến cố độc lập.
- Giải bài tập 6 trang 95, 96 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 7 trang 96 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 8 trang 96 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 9 trang 96 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 4 trang 96 SGK Toán 12 tập 2 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục