Giải bài tập 3 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo>
Cho đường thẳng \(d\) có phương trình chính tắc \(\frac{{x - 3}}{1} = \frac{{y + 3}}{3} = \frac{{z - 2}}{7}\). a) Tìm một vectơ chỉ phương của \(d\) và một điểm trên \(d\). b) Viết phương trình tham số của \(d\).
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho đường thẳng \(d\) có phương trình chính tắc \(\frac{{x - 3}}{1} = \frac{{y + 3}}{3} = \frac{{z - 2}}{7}\).
a) Tìm một vectơ chỉ phương của \(d\) và một điểm trên \(d\).
b) Viết phương trình tham số của \(d\).
Phương pháp giải - Xem chi tiết
a) Từ phương trình chính tắc, chỉ ra một điểm và một vectơ chỉ phương của \(d\).
b) Từ câu a, viết phương trình tham số của \(d\).
Lời giải chi tiết
a) Đường thẳng \(d\) có phương trình chính tắc \(\frac{{x - 3}}{1} = \frac{{y + 3}}{3} = \frac{{z - 2}}{7}\), nên nó đi qua điểm \(M\left( {3; - 3;2} \right)\) và nhận \(\vec a = \left( {1;3;7} \right)\) là một vectơ chỉ phương.
b) Từ câu a, ta suy ra phương trình tham số của đường thẳng \(d\) là \(\left\{ \begin{array}{l}x = 3 + t\\y = - 3 + 3t\\z = 2 + 7t\end{array} \right.\).
- Giải bài tập 4 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 5 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 6 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 7 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 8 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục