Giải bài tập 2 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo>
Cho hàm số \(y = {x^3} - 3{x^2} + 2\) a) Tìm điểm I thuộc đồ thị hàm số biết hoành độ của I là nghiệm của phương trình y’’ = 0. b) Chứng minh rằng I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Cho hàm số \(y = {x^3} - 3{x^2} + 2\)
a) Tìm điểm I thuộc đồ thị hàm số biết hoành độ của I là nghiệm của phương trình y’’ = 0.
b) Chứng minh rằng I là trung điểm của đoạn thẳng nối hai điểm cực trị của đồ thị hàm số.
Phương pháp giải - Xem chi tiết
a) I(x;y). Giải phương trình y’’ = 0 ta tìm được x. Thay x vào hàm số \(y = {x^3} - 3{x^2} + 2\) ta tìm được y
b) Tọa độ của trung điểm của đoạn thẳng nối 2 điểm có hoành độ bằng trung bình cộng hoành độ 2 điểm, tung độ bằng trung bình cộng trung bình 2 điểm
Lời giải chi tiết
a) \(y' = 3{x^2} - 6x\)
\(y'' = 6x - 6 = 0 \Leftrightarrow x = 1\)
Thay x = 1 vào \(y = {x^3} - 3{x^2} + 2\) ta được y = 0. Vậy I(1;0)
b) \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)
Hàm số đạt cực đại tại x = 0 và \({y_{cd}} = 2\)
Hàm số đạt cực tiểu tại x = 2 và \({y_{ct}} = - 2\)
Trung điểm của đoạn thẳng nối 2 cực trị sẽ có tọa độ \((\frac{{0 + 2}}{2};\frac{{2 + ( - 2)}}{2})\) hay (1;0). Vậy I là trung điểm của đoạn thẳng nối 2 cực trị
- Giải bài tập 3 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 4 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 5 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 6 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 1 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo