Giải bài 5.26 trang 34 sách bài tập toán 12 - Kết nối tri thức


Trong không gian Oxyz, giả sử bề mặt Trái Đất (S) có phương trình ({x^2} + {y^2} + {z^2} = 1). Từ vị trí (Aleft( {frac{1}{2};frac{1}{2};frac{1}{{sqrt 2 }}} right)), người ta dự định đào một đường hầm xuyên qua lòng đất theo hướng (overrightarrow v = left( {2;2; - 3} right)). Tính độ dài đường hầm cần đào.

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Trong không gian Oxyz, giả sử bề mặt Trái Đất (S) có phương trình \({x^2} + {y^2} + {z^2} = 1\).

Từ vị trí \(A\left( {\frac{1}{2};\frac{1}{2};\frac{1}{{\sqrt 2 }}} \right)\), người ta dự định đào một đường hầm xuyên qua lòng đất theo hướng \(\overrightarrow v  = \left( {2;2; - 3} \right)\). Tính độ dài đường hầm cần đào.

Phương pháp giải - Xem chi tiết

Đường hầm nằm trên đường thẳng đi qua A có một vectơ chỉ phương là \(\overrightarrow v  = \left( {2;2; - 3} \right)\).

Tìm giao điểm B khác A của đường thẳng này và mặt cầu.

Độ dài đường hầm cần đào là độ dài cạnh AB.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Đường hầm nằm trên đường thẳng d đi qua A và nhận \(\overrightarrow v  = \left( {2;2; - 3} \right)\) là vectơ chỉ phương.

Suy ra phương trình tham số của d là \(\left\{ \begin{array}{l}x = \frac{1}{2} + 2t\\y = \frac{1}{2} + 2t\\z = \frac{1}{{\sqrt 2 }} - 3t\end{array} \right.\)

Gọi B là điểm cuối của đường hầm cần đào. Khi đó B là giao điểm của đường thẳng d và mặt cầu (S). Do B thuộc d nên \(B\left( {\frac{1}{2} + 2t;\frac{1}{2} + 2t;\frac{1}{{\sqrt 2 }} - 3t} \right)\) với \(t \ne 0\) để B không trùng với A.

Vì B thuộc (S) nên ta có:

\({\left( {\frac{1}{2} + 2t} \right)^2} + {\left( {\frac{1}{2} + 2t} \right)^2} + {\left( {\frac{1}{{\sqrt 2 }} - 3t} \right)^2} = 1\)

\( \Leftrightarrow 1 + \left( {4 - 3\sqrt 2 } \right)t + 17{t^2} = 1\)

\( \Leftrightarrow \left( {4 - 3\sqrt 2 } \right)t + 17{t^2} = 0\)

\( \Rightarrow t = \frac{{3\sqrt 2  - 4}}{{17}}\) (do trường hợp \(t = 0\) không thỏa mãn).

Suy ra \(AB = \sqrt {{{\left( {2t} \right)}^2} + {{\left( {2t} \right)}^2} + {{\left( { - 3t} \right)}^2}}  = \left| t \right|\sqrt {17}  = \frac{{3\sqrt 2  - 4}}{{\sqrt {17} }}\).

Vậy độ dài đường hầm cần đào là \(\frac{{3\sqrt 2  - 4}}{{\sqrt {17} }}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí