Giải bài 5.21 trang 34 sách bài tập toán 12 - Kết nối tri thức


Trong không gian Oxyz, cho hai điểm (Aleft( {2;1;1} right)) và (Bleft( {2;1;3} right)). a) Viết phương trình mặt cầu đường kính AB. b) Viết phương trình mặt cầu (S) có tâm là gốc tọa độ (Oleft( {0;0;0} right)) và mặt cầu (S) đi qua A.

Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Hoá - Sinh - Sử - Địa

Đề bài

Trong không gian Oxyz, cho hai điểm \(A\left( {2;1;1} \right)\) và \(B\left( {2;1;3} \right)\).

a) Viết phương trình mặt cầu đường kính AB.

b) Viết phương trình mặt cầu (S) có tâm là gốc tọa độ \(O\left( {0;0;0} \right)\) và mặt cầu (S) đi qua A.

Phương pháp giải - Xem chi tiết

Ý a: Xác định tâm và bán kính của mặt cầu cần tìm, tâm là trung điểm I của cạnh AB, bán kính là cạnh \(IA = IB\).

Ý b: Bán kính của mặt cầu là cạnh OA.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Gọi (C) là mặt cầu đường kính AB, khi đó (C) có tâm \(I\left( {2;1;2} \right)\) là trung điểm của cạnh AB.

Bán kính của (C) là \(IA = 1\).

Phương trình mặt cầu đường kính AB là

(C): \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 1\).

b) Bán kính của (S) là \(OA = \sqrt 6 \).

Phương trình mặt cầu đường (S) là (S): \({x^2} + {y^2} + {z^2} = 6\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí