Giải bài 38 trang 21 sách bài tập toán 12 - Cánh diều>
Nêu một ví dụ chỉ ra rằng (intlimits_a^b {frac{{fleft( x right)}}{{gleft( x right)}}dx} ne frac{{intlimits_a^b {fleft( x right)dx} }}{{intlimits_a^b {gleft( x right)dx} }}) với (fleft( x right)) và (gleft( x right)) liên tục trên đoạn (left[ {a;b} right],gleft( x right) = 0,forall x in left[ {a;b} right]).
Đề bài
Nêu một ví dụ chỉ ra rằng \(\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx} \ne \frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }}\) với \(f\left( x \right)\) và \(g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right],g\left( x \right) = 0,\forall x \in \left[ {a;b} \right]\).
Phương pháp giải - Xem chi tiết
Sử dụng các công thức:
• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
• \(\int {\frac{1}{x}dx} = \ln \left| x \right| + C\).
Lời giải chi tiết
Lấy \(f\left( x \right) = 1,g\left( x \right) = x,a = 1,b = 2\). Ta có:
\(\begin{array}{l}\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx} = \int\limits_1^2 {\frac{1}{x}dx} = \left. {\ln \left| x \right|} \right|_1^2 = \ln \left| 2 \right| - \ln \left| 1 \right| = \ln 2\\\frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }} = \frac{{\int\limits_1^2 {1dx} }}{{\int\limits_1^2 {xdx} }} = \frac{{\left. x \right|_1^2}}{{\left. {\frac{{{x^2}}}{2}} \right|_1^2}} = \frac{{2 - 1}}{{\frac{{{2^2}}}{2} - \frac{{{1^2}}}{2}}} = \frac{2}{3}\end{array}\)
Vậy \(\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx} \ne \frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }}\).
- Giải bài 39 trang 21 sách bài tập toán 12 - Cánh diều
- Giải bài 40 trang 22 sách bài tập toán 12 - Cánh diều
- Giải bài 41 trang 22 sách bài tập toán 12 - Cánh diều
- Giải bài 42 trang 22 sách bài tập toán 12 - Cánh diều
- Giải bài 43 trang 22 sách bài tập toán 12 - Cánh diều
>> Xem thêm