Giải bài 29 trang 20 sách bài tập toán 12 - Cánh diều>
Phát biểu nào sau đây là đúng? Biết (fleft( x right) = frac{1}{{{{sin }^2}x}}) liên tục trên (left[ {a;b} right]). A. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = cot a - cot b). B. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = cot b - cot a). C. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = tan a - tan b). D. (intlimits_a^b {frac{1}{{{{sin }^2}x}}dx} = tan b - tan a).
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Phát biểu nào sau đây là đúng? Biết \(f\left( x \right) = \frac{1}{{{{\sin }^2}x}}\) liên tục trên \(\left[ {a;b} \right]\).
A. \(\int\limits_a^b {\frac{1}{{{{\sin }^2}x}}dx} = \cot a - \cot b\).
B. \(\int\limits_a^b {\frac{1}{{{{\sin }^2}x}}dx} = \cot b - \cot a\).
C. \(\int\limits_a^b {\frac{1}{{{{\sin }^2}x}}dx} = \tan a - \tan b\).
D. \(\int\limits_a^b {\frac{1}{{{{\sin }^2}x}}dx} = \tan b - \tan a\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức: \(\int {\frac{1}{{{{\sin }^2}x}}dx} = - \cot x + C\).
Lời giải chi tiết
\(\int\limits_a^b {\frac{1}{{{{\sin }^2}x}}dx} = \left. { - \cot x} \right|_a^b = \left( { - \cot b} \right) - \left( { - \cot a} \right) = \cot a - \cot b\).
Chọn A.
- Giải bài 30 trang 20 sách bài tập toán 12 - Cánh diều
- Giải bài 31 trang 20 sách bài tập toán 12 - Cánh diều
- Giải bài 32 trang 20 sách bài tập toán 12 - Cánh diều
- Giải bài 33 trang 20 sách bài tập toán 12 - Cánh diều
- Giải bài 34 trang 21 sách bài tập toán 12 - Cánh diều
>> Xem thêm