Giải bài 3 trang 45 sách bài tập toán 11 - Cánh diều>
Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = \frac{{n + 1}}{{3n - 2}}\). Với \({u_k} = \frac{8}{{19}}\) là số hạng của dãy số thì \(k\) bằng:
Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = \frac{{n + 1}}{{3n - 2}}\). Với \({u_k} = \frac{8}{{19}}\) là số hạng của dãy số thì \(k\) bằng:
A. 8
B. 7
C. 9
D. 6
Phương pháp giải - Xem chi tiết
Thay \(n = k\) vào công thức \({u_n} = \frac{{n + 1}}{{3n - 2}}\) rồi giải phương trình ẩn \(k\).
Lời giải chi tiết
Do \({u_k} = \frac{8}{{19}}\) nên \(\frac{{k + 1}}{{3k - 2}} = \frac{8}{{19}} \Leftrightarrow 19\left( {k + 1} \right) = 8\left( {3k - 2} \right) \Leftrightarrow 19k + 19 = 24k - 16\)
\( \Leftrightarrow - 5k = - 35 \Leftrightarrow k = 7\).
Vậy \({u_k} = \frac{8}{{19}}\) là số hạng thứ 7 của dãy.
Đáp án đúng là B.
- Giải bài 4 trang 45 sách bài tập toán 11 - Cánh diều
- Giải bài 5 trang 45 sách bài tập toán 11 - Cánh diều
- Giải bài 6 trang 45 sách bài tập toán 11 - Cánh diều
- Giải bài 7 trang 46 sách bài tập toán 11 - Cánh diều
- Giải bài 8 trang 46 sách bài tập toán 11 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục