Giải bài 15 trang 39 sách bài tập toán 8 - Cánh diều>
Thực hiện phép tính:
Đề bài
Thực hiện phép tính:
a) \(\frac{1}{{{x^2} - x + 1}}:\frac{{x + 1}}{{x - 1}}\)
b) \(\frac{{x + y}}{{2x - y}}:\frac{1}{{x - y}}\)
c) \(\frac{{{x^3}y + x{y^3}}}{{{x^4}y}}:\left( {{x^2} + {y^2}} \right)\)
d) \(\frac{{{x^3} + 8}}{{{x^2} - 2x + 1}}:\frac{{{x^2} + 3x + 2}}{{1 - {x^2}}}\)
Phương pháp giải - Xem chi tiết
Sử dụng các hằng đẳng thức và phương pháp thực hiện phép chia và phép nhân phân thức đại số để thực hiện phép tính.
Lời giải chi tiết
a) \(\frac{1}{{{x^2} - x + 1}}:\frac{{x + 1}}{{x - 1}} = \frac{1}{{{x^2} - x + 1}}.\frac{{x - 1}}{{x + 1}} = \frac{{x - 1}}{{{x^3} + 1}}\)
b) \(\frac{{x + y}}{{2x - y}}:\frac{1}{{x - y}} = \frac{{x + y}}{{2x - y}}.\frac{{x - y}}{1} = \frac{{{x^2} - {y^2}}}{{2x - y}}\)
c) \(\frac{{{x^3}y + x{y^3}}}{{{x^4}y}}:\left( {{x^2} + {y^2}} \right) = \frac{{xy\left( {{x^2} + {y^2}} \right)}}{{{x^4}y}}.\frac{1}{{{x^2} + {y^2}}} = \frac{1}{{{x^3}}}\)
d) \(\frac{{{x^3} + 8}}{{{x^2} - 2x + 1}}:\frac{{{x^2} + 3x + 2}}{{1 - {x^2}}} = \frac{{\left( {x + 2} \right)\left( {{x^2} - 2x + {y^2}} \right)}}{{{{\left( {x - 1} \right)}^2}}}.\frac{{ - \left( {x - 1} \right)\left( {x + 1} \right)}}{{\left( {x + 2} \right)\left( {x + 1} \right)}} = - \frac{{{x^2} - 2x + 4}}{{x - 1}}\)
- Giải bài 16 trang 40 sách bài tập toán 8 - Cánh diều
- Giải bài 17 trang 40 sách bài tập toán 8 - Cánh diều
- Giải bài 18 trang 40 sách bài tập toán 8 - Cánh diều
- Giải bài 19 trang 40 sách bài tập toán 8 - Cánh diều
- Giải bài 14 trang 39 sách bài tập toán 8 - Cánh diều
>> Xem thêm