Giải bài 14 trang 100 sách bài tập toán 11 - Cánh diều


Cho hình chóp \(S.ABCD\) có đáy\(ABCD\) là hình bình hành.

Đề bài

Cho hình chóp \(S.ABCD\) có đáy\(ABCD\) là hình bình hành. Gọi \(M\), \(N\),\(P\), \(Q\) lần lượt là trung điểm của \(SA\), \(SB\), \(SC\), \(SD\). Trong các đường thẳng sau, đường thẳng nào KHÔNG song song với \(NP\)?

A. \(MQ\)                      

B. \(BD\)             

C. \(AD\)             

D. \(BC\)

Phương pháp giải - Xem chi tiết

Chỉ ra 3 đường thẳng song song với \(NP\), đường thẳng còn lại chính là đáp án cần chọn.

Lời giải chi tiết

Ta có \(N\) là trung điểm của \(SB\), \(P\) là trung điểm của \(SC\), suy ra \(NP\) là đường trung bình của tam giác \(SBC\). Từ đó ta có \(NP\parallel BC\). Chứng minh tương tự ta cũng có \(MQ\parallel AD\).

Do \(ABCD\) là hình bình hành, nên \(AD\parallel BC\).

Hai đường thẳng \(NP\) và \(AD\) phân biệt, cùng song song với \(BC\) nên chúng song song với nhau.

Mặt khác \(NP\) và \(MQ\) phân biệt, cùng song song với \(AD\) nên chúng song song với nhau.

Như vậy đường thẳng \(NP\) song song với các đường thẳng \(BC\), \(AD\), \(MQ\).

Đáp án cần chọn là đáp án B.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí