Giải bài 10 trang 121 SGK Toán 8 tập 1 - Cánh diều


Cho hình vuông ABCD.

Đề bài

Cho hình vuông ABCD. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ < AB. Chứng minh tứ giác MNPQ là hình vuông.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Chứng minh tứ giác MNPQ là hình thoi có một góc vuông nên MNPQ là hình vuông

Lời giải chi tiết

Ta có: AM = BN = CP = DQ (gt)

AB = BC = CD = DA (ABCD là hình vuông)

\(\Rightarrow\) BM = CN = DP = AQ

\(\Rightarrow \Delta AMQ = \Delta BNM = \Delta CPN = \Delta DQP\)(hai cạnh góc vuông)

Suy ra QM = MN = NP = PQ

Suy ra MNPQ là hình thoi

Do: \(\Delta AMQ = \Delta BNM \Rightarrow {\widehat M_1} = \widehat {BNM}\) (2 góc tương ứng)

Mà: \(\widehat {BNM} + {\widehat M_3} = {90^0}\)(do \(\Delta BNM\)vuông tại B)

\( \Rightarrow {\widehat M_1} + {\widehat M_3} = {90^0} \Rightarrow {\widehat M_2} = {180^0} - {\widehat M_1} - {\widehat M_3} = {180^0} - {90^0} = {90^0}\)

Vậy hình thoi MNPQ có một góc bằng 90o nên MNPQ là hình vuông


Bình chọn:
4.2 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí