Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 3. Một số dạng phương trình lượng giác đơn giản
Câu 42 trang 47 SGK Đại số và Giải tích 11 Nâng cao>
Giải các phương trình sau :
Giải các phương trình sau :
LG a
\(\sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& \sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x \cr & \Leftrightarrow \left( {\sin x + \sin 3x} \right) + \sin 2x = \left( {\cos x + \cos 3x} \right) + \cos 2x \cr & \Leftrightarrow 2\sin 2x\cos x + \sin 2x = 2\cos 2x\cos x + \cos 2x \cr & \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) - \cos 2x\left( {2\cos x + 1} \right) = 0 \cr & \Leftrightarrow \left( {2\cos x + 1} \right)\left( {\sin 2x - \cos 2x} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{2\cos x + 1 = 0} \cr {\sin 2x - \cos 2x = 0} \cr} } \right. \cr&\Leftrightarrow \left[ {\matrix{{\cos x = - {1 \over 2}} \cr {\tan 2x = 1} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = \pm {{2\pi } \over 3} + k2\pi } \cr {x = {\pi \over 8} + k{\pi \over 2}} \cr} } \right.,k \in\mathbb Z \cr} \)
LG b
\(\sin x = \sqrt 2 \sin 5x - \cos x\)
Lời giải chi tiết:
\(\eqalign{& \sin x = \sqrt 2 \sin 5x - \cos x \cr & \Leftrightarrow \sin x + \cos x = \sqrt 2 \sin 5x\cr& \Leftrightarrow {1 \over {\sqrt 2 }}\sin x + {1 \over {\sqrt 2 }}\cos x = \sin 5x \cr & \Leftrightarrow \sin \left( {x + {\pi \over 4}} \right) = \sin 5x \cr&\Leftrightarrow \left[ {\matrix{{5x = x + {\pi \over 4} + k2\pi } \cr {5x = {{3\pi } \over 4} - x + k2\pi } \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = {\pi \over {16}} + k{\pi \over 2}} \cr {x = {\pi \over 8} + k{\pi \over 3}} \cr} ,k \in\mathbb Z} \right. \cr} \)
LG c
\({1 \over {\sin 2x}} + {1 \over {\cos 2x}} = {2 \over {\sin 4x}}\)
Lời giải chi tiết:
ĐKXĐ : \(\sin4x ≠ 0\) (điều kiện này đã bao gồm \(\sin 2x ≠ 0\) và \(\cos2x ≠ 0\)).
Với điều kiện đó, ta có thể nhân hai vế của phương trình với \(\sin4x\) :
\(\eqalign{& {1 \over {\sin 2x}} + {1 \over {\cos 2x}} = {2 \over {\sin 4x}} \cr & \Leftrightarrow {1 \over {\sin 2x}} + {1 \over {\cos 2x}} = {2 \over {2\sin 2x\cos 2x}} \cr & \Leftrightarrow \frac{{\cos 2x + \sin 2x}}{{\sin 2x\cos 2x}} = \frac{1}{{\sin 2x\cos 2x}}\cr& \Rightarrow \sin 2x + \cos 2x = 1\cr& \Leftrightarrow \frac{1}{{\sqrt 2 }}\sin 2x + \frac{1}{{\sqrt 2 }}\cos 2x = \frac{1}{{\sqrt 2 }}\cr& \Leftrightarrow \sin \left( {2x + {\pi \over 4}} \right) = \sin {\pi \over 4} \cr & \Leftrightarrow \left[ {\matrix{{2x+\frac{\pi }{4} = \frac{\pi }{4}+k2\pi } \cr {2x +\frac{\pi }{4}= \pi-\frac{\pi }{4} + k2\pi } \cr} } \right. \cr} \)
\( \Leftrightarrow \left[ \begin{array}{l}
2x = k2\pi \\
2x = \frac{\pi }{2} + k2\pi
\end{array} \right.\)
Ta thấy : Nếu \(2x = k2π\) thì \(\sin2x = 0\); nếu \(2x = {\pi \over 2} + k2\pi \) thì \(\cos2x = 0\), nên các giá trị đó của \(x\) đều không thỏa mãn ĐKXĐ. Vậy phương trình đã cho vô nghiệm.
LG d
\(\sin x + \cos x = {{\cos 2x} \over {1 - \sin 2x}}\)
Lời giải chi tiết:
Ta có: \(1 - \sin 2x \)
\(= {\cos ^2}x + {\sin ^2}x - 2\sin x\cos x \)
\(= {\left( {\cos x - \sin x} \right)^2}\)
ĐKXĐ : \(\sin2x ≠ 1\).
Với điều kiện đó, ta có:
\(\eqalign{& \sin x + \cos x = {{\cos 2x} \over {1 - \sin 2x}} \cr & \Leftrightarrow \sin x + \cos x = {{{{\cos }^2}x - {{\sin }^2}x} \over {{{\left( {\cos x - \sin x} \right)}^2}}} \cr &\Leftrightarrow \sin x + \cos x = \frac{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}{{{{\left( {\cos x - \sin x} \right)}^2}}} \cr&\Leftrightarrow \sin x + \cos x = \frac{{\cos x + \sin x}}{{\cos x - \sin x}}\cr& \Leftrightarrow \left( {\sin x + \cos x} \right)\left( {1 - {1 \over {\cos x - \sin x}}} \right) = 0 \cr & +)\,\,\sin x + \cos x = 0\cr& \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = 0 \cr&\Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 0 \cr&\Leftrightarrow x + \frac{\pi }{4} = k\pi \cr&\Leftrightarrow x = - {\pi \over 4} + k\pi \cr & +)\,\,{1 \over {\cos x - \sin x}} = 1 \cr&\Leftrightarrow \cos x - \sin x = 1 \cr & \Leftrightarrow \sqrt 2 \cos \left( {x + \frac{\pi }{4}} \right) = 1\cr& \Leftrightarrow \cos \left( {x + {\pi \over 4}} \right) = {1 \over {\sqrt 2 }} \cr} \)
\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\
x + \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = k2\pi \\
x = - \frac{\pi }{2} + k2\pi
\end{array} \right.
\end{array}\)
Loigiaihay.com




