Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 3. Một số dạng phương trình lượng giác đơn giản
Câu 32 trang 42 SGK Đại số và Giải tích 11 Nâng cao>
Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi biểu thức sau :
Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi biểu thức sau :
LG a
\(a\sin x + b\cos x\) (a và b là hằng số, \(a^2+ b^2≠ 0\))
Lời giải chi tiết:
Ta có:
\(\eqalign{
& a\sin x + b\cos x \cr&= \sqrt {{a^2} + {b^2}} \left( {{a \over {\sqrt {{a^2} + {b^2}} }}\sin x + {b \over {\sqrt {{a^2} + {b^2}} }}\cos x} \right) \cr
& = \sqrt {{a^2} + {b^2}} \left( {\sin x\cos \alpha + \sin \alpha \cos x} \right) \cr
& = \sqrt {{a^2} + {b^2}} \sin \left( {x + \alpha } \right) \cr } \)
trong đó \(\left\{ \begin{array}{l}
\cos \alpha = \frac{a}{{\sqrt {{a^2} + {b^2}} }}\\
\sin \alpha = \frac{b}{{\sqrt {{a^2} + {b^2}} }}
\end{array} \right.\)
Vì \( - 1 \le \sin \left( {x + \alpha } \right) \le 1\) nên:
\( - \sqrt {{a^2} + {b^2}} \le \sqrt {{a^2} + {b^2}} \sin \left( {x + \alpha } \right) \le \sqrt {{a^2} + {b^2}} \)
Do đó, giá trị lớn nhất và giá trị nhỏ nhất của \(a\sin x + b\cos x\) lần lượt là :
\(\sqrt {{a^2} + {b^2}} \,\text{ và }\, - \sqrt {{a^2} + {b^2}} \)
LG b
\({\sin ^2}x + \sin x\cos x + 3{\cos ^2}x;\)
Lời giải chi tiết:
Ta có :
\(\eqalign{
& y={\sin ^2}x + \sin x\cos x + 3{\cos ^2}x \cr&= {{1 - \cos 2x} \over 2} +{1 \over 2}\sin 2x + 3.{{1 + \cos 2x} \over 2} \cr
& = \frac{1}{2} - \frac{{\cos 2x}}{2} + \frac{1}{2}\sin 2x + \frac{3}{2} + \frac{{3\cos 2x}}{2}\cr&= {1 \over 2}\sin 2x + \cos 2x + 2 \cr } \)
Ta có:
\(\begin{array}{l}
{\left( {\frac{1}{2}\sin 2x + \cos 2x} \right)^2}\\
\le \left( {{{\left( {\frac{1}{2}} \right)}^2} + {1^2}} \right)\left( {{{\sin }^2}2x + {{\cos }^2}x} \right)\\
= \left( {\frac{1}{4} + 1} \right).1 = \frac{5}{4}\\
\Rightarrow {\left( {\frac{1}{2}\sin 2x + \cos 2x} \right)^2} \le \frac{5}{4}\\
\Rightarrow - \frac{{\sqrt 5 }}{2} \le \frac{1}{2}\sin 2x + \cos 2x \le \frac{{\sqrt 5 }}{2}
\end{array}\)
\(\begin{array}{l}
\Rightarrow - \frac{{\sqrt 5 }}{2} + 2 \le \frac{1}{2}\sin 2x + \cos 2x + 2 \le \frac{{\sqrt 5 }}{2} + 2\\
\Rightarrow - \frac{{\sqrt 5 }}{2} + 2 \le y \le \frac{{\sqrt 5 }}{2} + 2
\end{array}\)
Do đó giá trị lớn nhất và giá trị nhỏ nhất của \({\sin ^2}x + \sin x\cos x + 3{\cos ^2}x\) lần lượt là :
\({{\sqrt 5 } \over 2} + 2\,\text{ và }\, - {{\sqrt 5 } \over 2} + 2\)
LG c
\(A{\sin ^2}x + B\sin x\cos x + C{\cos ^2}x\) (A, B và C là hằng số).
Lời giải chi tiết:
Ta có:
\(\eqalign{
& A{\sin ^2}x + B\sin x\cos x + C{\cos ^2}x \cr
& = A.{{1 - \cos 2x} \over 2} + {B \over 2}.\sin 2x + C.{{1 + \cos 2x} \over 2} \cr
& = {B \over 2}.\sin 2x + {{C - A} \over 2}\cos 2x + {{C + A} \over 2} \cr&= a\sin 2x + b\cos 2x + c \cr
& \text{ trong đó}\,\,a = {B \over 2},\,b = {{C - A} \over 2},\,c = {{C + A} \over 2} \cr} \)
Ta có:
\(\begin{array}{l}
{\left( {a\sin 2x + b\cos 2x} \right)^2}\\
\le \left( {{a^2} + {b^2}} \right)\left( {{{\sin }^2}2x + {{\cos }^2}2x} \right)\\
= \left( {{a^2} + {b^2}} \right).1 = {a^2} + {b^2}\\
\Rightarrow {\left( {a\sin 2x + b\cos 2x} \right)^2} \le {a^2} + {b^2}\\
\Rightarrow - \sqrt {{a^2} + {b^2}} \le a\sin 2x + b\cos 2x \le \sqrt {{a^2} + {b^2}} \\
\Rightarrow - \sqrt {{a^2} + {b^2}} + c \le a\sin 2x + b\cos 2x + c \le \sqrt {{a^2} + {b^2}} + c
\end{array}\)
Vậy \(A{\sin ^2}x + B\sin x\cos x + C{\cos ^2}x\) đạt giá trị lớn nhất là :
\(\sqrt {{a^2} + {b^2}} + c\) \( = \sqrt {{{\left( {\frac{B}{2}} \right)}^2} + {{\left( {\frac{{C - A}}{2}} \right)}^2}} + \frac{{C + A}}{2}\) \( = \sqrt {{{{B^2} + {{\left( {C - A} \right)}^2}} \over 4}} + {{C + A} \over 2} \) \(= {1 \over 2}\sqrt {{B^2} + \left( {C - A} \right)^2} + {{C + A} \over 2}\)
và giá trị nhỏ nhất là \(-\sqrt {{a^2} + {b^2}} + c\) \( = -\sqrt {{{\left( {\frac{B}{2}} \right)}^2} + {{\left( {\frac{{C - A}}{2}} \right)}^2}} + \frac{{C + A}}{2}\) \( =- \sqrt {{{{B^2} + {{\left( {C - A} \right)}^2}} \over 4}} + {{C + A} \over 2} \) \( = - {1 \over 2}\sqrt {{B^2} + {{\left( {C - A} \right)}^2}} + {{C + A} \over 2}.\)
Loigiaihay.com




