Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 3. Một số dạng phương trình lượng giác đơn giản
Câu 33 trang 42 SGK Đại số và Giải tích 11 Nâng cao>
Giải các phương trình sau :
Giải các phương trình sau :
a. \(2{\sin ^2}x + 3\sqrt 3 \sin x\cos x - {\cos ^2}x = 4\)
b. \(3{\sin ^2}x + 4\sin 2x + \left( {8\sqrt 3 - 9} \right){\cos ^2}x = 0\)
c. \({\sin ^2}x + \sin 2x - 2{\cos ^2}x = {1 \over 2}\)
LG a
\(2{\sin ^2}x + 3\sqrt 3 \sin x\cos x - {\cos ^2}x = 4\)
Lời giải chi tiết:
Thay \(\cos x = 0\)\( \Rightarrow {\sin ^2}x = 1\) vào phương trình ta được:
\(2.1 + 2\sqrt 3 .0 - 0 = 4\) (vô lí)
Chia hai vế phương trình cho \({\cos ^2}x \ne 0\) ta được :
\(2\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + 3\sqrt 3 .\frac{{\sin x}}{{\cos x}} - 1 = \frac{4}{{{{\cos }^2}x}}\)
\(\eqalign{
& \Leftrightarrow 2{\tan ^2}x + 3\sqrt 3 \tan x - 1 = 4\left( {1 + {{\tan }^2}x} \right) \cr
& \Leftrightarrow 2{\tan ^2}x - 3\sqrt 3 \tan x + 5 = 0 \cr} \)
Phương trình vô nghiệm nên phương trình đã cho vô nghiệm.
LG b
\(3{\sin ^2}x + 4\sin 2x + \left( {8\sqrt 3 - 9} \right){\cos ^2}x = 0\)
Lời giải chi tiết:
\(\begin{array}{l}
PT \Leftrightarrow 3{\sin ^2}x + 4.2\sin x\cos x + \left( {8\sqrt 3 - 9} \right){\cos ^2}x = 0\\
\Leftrightarrow 3{\sin ^2}x + 8\sin x\cos x + \left( {8\sqrt 3 - 9} \right){\cos ^2}x = 0
\end{array}\)
Thay \(\cos x = 0\)\( \Rightarrow {\sin ^2}x = 1\) vào phương trình ta được:
\(3.1 + 8.0 + 0 = 0\) (vô lí)
Chia hai vế phương trình cho \({\cos ^2}x\) ta được :
\(3\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + 8\frac{{\sin x}}{{\cos x}} + \left( {8\sqrt 3 - 9} \right) = 0\)
\(\eqalign{& \Leftrightarrow 3{\tan ^2}x + 8\tan x + 8\sqrt 3 - 9 = 0\cr& \Leftrightarrow \left[ {\matrix{{\tan x = - \sqrt 3 } \cr
{\tan x = - {8 \over 3} + \sqrt 3 } \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = -{\pi \over 3} + k\pi } \cr {x = \alpha + k\pi } \cr} } \right.\,\,k \in\mathbb Z \cr & \text{ trong đó}\,\tan \alpha = - {8 \over 3} + \sqrt 3 \cr} \)
LG c
\({\sin ^2}x + \sin 2x - 2{\cos ^2}x = {1 \over 2}\)
Lời giải chi tiết:
\(PT \Leftrightarrow {\sin ^2}x + 2\sin x\cos x - 2{\cos ^2}x = {1 \over 2} \)
Thay \(\cos x = 0\)\( \Rightarrow {\sin ^2}x = 1\) vào phương trình ta được:
\(1 + 2.0 - 0 = \frac{1}{2}\) (vô lí)
Chia hai vế phương trình cho \({\cos ^2}x\) ta được :
\(\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + 2\frac{{\sin x}}{{\cos x}} - 2 = \frac{1}{{2{{\cos }^2}x}}\)
\(\eqalign{& \Leftrightarrow {\tan ^2}x + 2\tan x - 2 = {1 \over 2}\left( {1 + {{\tan }^2}x} \right) \cr & \Leftrightarrow {\tan ^2}x + 4\tan x - 5 = 0 \cr&\Leftrightarrow \left[ {\matrix{{\tan x = 1} \cr {\tan x = - 5} \cr} } \right. \cr&\Leftrightarrow \left[ {\matrix{{x = {\pi \over 4} + k\pi } \cr {x = \alpha + k\pi } \cr} } \right.\,\,\,k \in \mathbb Z \cr & \text{ trong đó}\,\tan \alpha = - 5 \cr} \)
Loigiaihay.com




