Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 3. Một số dạng phương trình lượng giác đơn giản
Câu 28 trang 41 SGK Đại số và Giải tích 11 Nâng cao>
Giải các phương trình sau :
Giải các phương trình sau :
LG a
\(2{\cos ^2}x - 3\cos x + 1 = 0\)
Lời giải chi tiết:
Đặt \(t = \cos x\), \(|t| ≤ 1\) ta có:
\(2{t^2} - 3t + 1 = 0 \Leftrightarrow \left[ {\matrix{{t = 1} \cr {t = {1 \over 2}} \cr} } \right. \)
\(\Leftrightarrow \left[ {\matrix{{\cos x = 1} \cr {\cos x = {1 \over 2}} \cr} } \right. \)
\(\Leftrightarrow \left[ {\matrix{{x = k2\pi } \cr {x = \pm {\pi \over 3} + k2\pi } \cr} \left( {k \in\mathbb Z} \right)} \right.\)
LG b
\({\cos ^2}x + \sin x + 1 = 0\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& {\cos ^2}x + \sin x + 1 = 0 \cr&\Leftrightarrow 1 - {\sin ^2}x + \sin x + 1 = 0 \cr & \Leftrightarrow {\sin ^2}x - \sin x - 2 = 0 \cr&\Leftrightarrow \left[ {\matrix{{\sin x = - 1} \cr {\sin x = 2\,\left( {\text {loại }} \right)} \cr} } \right. \cr&\Leftrightarrow x = - {\pi \over 2} + k2\pi \cr} \)
LG c
\(\sqrt 3 {\tan ^2}x - \left( {1 + \sqrt 3 } \right)\tan x + 1 = 0\)
Lời giải chi tiết:
\(\sqrt 3 {\tan ^2}x - \left( {1 + \sqrt 3 } \right)\tan x + 1 = 0 \)
\(\Leftrightarrow \left[ {\matrix{{\tan x = 1} \cr
{\tan x = {1 \over {\sqrt 3 }}} \cr} } \right. \)
\(\Leftrightarrow \left[ {\matrix{{x = {\pi \over 4} + k\pi } \cr {x = {\pi \over 6} + k\pi } \cr} } \right.\left( {k \in\mathbb Z} \right)\)
Loigiaihay.com




