Khi số thập phân vô hạn tuần hoàn \(0,4818181...\) được viết dưới dạng một phân số tối giản thì tử số nhỏ hơn mẫu số bao nhiêu đơn vị?
-
A.
\(513\)
-
B.
\(29\)
-
C.
\(13\)
-
D.
\(57\)
Số thập phân vô hạn tuần hoàn tạp
+) Lấy số tạo bởi phần bất thường và chu kì trừ đi phần bất thường làm tử.
+) Mẫu số là số gồm các chữ số $9$ và kèm theo là các chữ số $0$; số chữ số $9$ bằng số chữ số trong chu kỳ, số chữ số 0 bằng số chữ số của phần bất thường.
Ta có \(0,4818181... = 0,4\left( {81} \right) = \dfrac{{481 - 4}}{{990}} = \dfrac{{477}}{{990}} = \dfrac{{53}}{{110}}\)
Khi đó tử số nhỏ hơn mẫu số số đơn vị là \(110 - 53 = 57\) đơn vị.
Đáp án : D
Các bài tập cùng chuyên đề
Chọn câu sai.
Trong các phân số \(\dfrac{2}{7};\,\dfrac{2}{{45}};\dfrac{{ - 5}}{{ - 240}};\dfrac{{ - 7}}{{18}}\). Có bao nhiêu phân số viết được dưới dạng số thập phân vô hạn tuần hoàn?
Số thập phân $0,35$ được viết dưới dạng phân số tối giản thì tổng tử số và mẫu số của phân số đó là:
Phân số nào dưới đây biểu diễn số thập phân $0,016?$
Viết phân số \(\dfrac{{11}}{{24}}\) dưới dạng số thập phân vô hạn tuần hoàn ta được
Số thập phân vô hạn tuần hoàn \(0,\left( {66} \right)\) được viết dưới dạng phân số tối giản, khi đó hiệu tử số và mẫu số là
Viết các số thập phân vô hạn tuần hoàn $1,4\left( {51} \right)$; \(3,1\left( {45} \right)\) dưới dạng phân số tối giản ta được hai phân số có tổng các tử số là
Tính \(0,(3) + 1\dfrac{1}{9} + 0,4(2)\), ta được kết quả là
Cho \(A = \dfrac{4}{9} + 1,2(31) + 0,(13)\) và \(B = 3\dfrac{1}{2}.\dfrac{1}{{49}} - \left[ {2,\left( 4 \right).2\dfrac{5}{{11}}} \right]:\left( { - \dfrac{{42}}{5}} \right)\). So sánh \(A\) và \(B\).
Tìm \(x\) biết: \(0,(37).x = 1\)
Giá trị nào dưới đây của \(x\) thỏa mãn \(0,(26).x = 1,2(31)\)