Đề bài

Chọn câu sai.

  • A.

    Phân số \(\dfrac{2}{{25}}\) viết được dưới dạng số thập phân hữu hạn

  • B.

    Phân số \(\dfrac{{55}}{{ - 300}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn 

  • C.

    Phân số \(\dfrac{{63}}{{77}}\) viết được dưới dạng số thập phân hữu hạn

  • D.

    Phân số \(\dfrac{{93}}{{360}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn

Phương pháp giải

Bước 1: Viết phân số dưới dạng phân số tối giản với mẫu số dương

Bước 2: Phân tích mẫu số ra thừa số nguyên tố

Bước 3: Nếu mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn. Nếu mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân vô hạn tuần hoàn.

Lời giải của GV Loigiaihay.com

Ta có

+ \(25 = {5^2}\) nên phân số \(\dfrac{2}{{25}}\) viết được dưới dạng số thập phân hữu hạn. Do đó A đúng.

+ \(\dfrac{{55}}{{ - 300}} = \dfrac{{ - 11}}{{60}}\) . Thấy \(60 = {2^2}.3.5\) (chứa thừa số $3$ khác $2;5$) nên phân số \(\dfrac{{ - 55}}{{300}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn. Do đó B đúng.

+ Xét \(\dfrac{{63}}{{77}}\) thấy \(77 = 7.11\) (chứa các thừa số $7;11$ khác $2;5$) nên phân số \(\dfrac{{63}}{{77}}\) viết được dưới dạng số thập phân vô hạn tuần hoàn. Do đó C sai.

+ Xét   \(\dfrac{{93}}{{360}} = \dfrac{{31}}{{120}}\) có \(120 = {2^3}.3.5\) (chứa thừa số $3$ khác $2;5$) nên phân số \(\dfrac{{93}}{{360}}\)viết được dưới dạng số thập phân vô hạn tuần hoàn. Do đó D đúng.

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Trong các phân số \(\dfrac{2}{7};\,\dfrac{2}{{45}};\dfrac{{ - 5}}{{ - 240}};\dfrac{{ - 7}}{{18}}\). Có bao nhiêu phân số viết được dưới dạng số thập phân vô hạn tuần hoàn?

Xem lời giải >>
Bài 2 :

Số thập phân $0,35$ được viết dưới dạng phân số tối giản thì tổng tử số và mẫu số của phân số đó là:

Xem lời giải >>
Bài 3 :

Phân số nào dưới đây biểu diễn số thập phân $0,016?$

Xem lời giải >>
Bài 4 :

Viết phân số \(\dfrac{{11}}{{24}}\) dưới dạng số thập phân vô hạn tuần hoàn ta được

Xem lời giải >>
Bài 5 :

Số thập phân vô hạn tuần hoàn \(0,\left( {66} \right)\) được viết dưới dạng phân số tối giản, khi đó hiệu tử số và mẫu số là

Xem lời giải >>
Bài 6 :

Viết các số thập phân vô hạn tuần hoàn $1,4\left( {51} \right)$; \(3,1\left( {45} \right)\) dưới dạng phân số tối giản ta được hai phân số có tổng các tử số là

Xem lời giải >>
Bài 7 :

Tính \(0,(3) + 1\dfrac{1}{9} + 0,4(2)\), ta được kết quả là

Xem lời giải >>
Bài 8 :

Cho \(A = \dfrac{4}{9} + 1,2(31) + 0,(13)\) và  \(B = 3\dfrac{1}{2}.\dfrac{1}{{49}} - \left[ {2,\left( 4 \right).2\dfrac{5}{{11}}} \right]:\left( { - \dfrac{{42}}{5}} \right)\). So sánh \(A\) và \(B\).

Xem lời giải >>
Bài 9 :

Tìm \(x\) biết: \(0,(37).x = 1\)

Xem lời giải >>
Bài 10 :

Giá trị nào dưới đây của \(x\) thỏa mãn \(0,(26).x = 1,2(31)\)

Xem lời giải >>
Bài 11 :

Khi số thập phân vô hạn tuần hoàn \(0,4818181...\) được viết dưới dạng một phân số tối giản thì tử số nhỏ hơn mẫu số bao nhiêu đơn vị?

Xem lời giải >>