Bài 9.23 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức>
Chuyển động của một vật có phương trình (s(t) = sin left( {0,8pi t + frac{pi }{3}} right))
Đề bài
Chuyển động của một vật có phương trình \(s(t) = \sin \left( {0,8\pi t + \frac{\pi }{3}} \right)\), ở đó s tính bằng centimét và thời gian t tính bằng giây. Tại các thời điểm vận tốc bằng 0 , giá trị tuyệt đối của gia tốc của vật gần với giá trị nào sau đây nhất?
A. \(4,5\;{\rm{cm}}/{{\rm{s}}^2}\).
B. \(5,5\;{\rm{cm}}/{{\rm{s}}^2}\).
C. \(6,3\;{\rm{cm}}/{{\rm{s}}^2}\).
D. \(7,1\;{\rm{cm}}/{{\rm{s}}^2}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng lý thuyết \(v = s';a = s''\)
Lời giải chi tiết
Ta có
\(\begin{array}{l}v\left( t \right) = s'\left( t \right) = 0,8\pi \cos \left( {0,8\pi t + \frac{\pi }{3}} \right);\\a\left( t \right) = s''\left( t \right) = - 0,8\pi .0,8\pi \sin \left( {0,8\pi t + \frac{\pi }{3}} \right) = - 0,64{\pi ^2}\sin \left( {0,8\pi t + \frac{\pi }{3}} \right)\end{array}\)
Vì
\(\begin{array}{l}v\left( t \right) = 0 \Leftrightarrow 0,8\pi \cos \left( {0,8\pi t + \frac{\pi }{3}} \right) = 0\\ \Leftrightarrow 0,8\pi t + \frac{\pi }{3} = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\\ \Leftrightarrow 0,8\pi t = \frac{\pi }{6} + k\pi \Leftrightarrow t = \frac{5}{{24}} + \frac{{5k}}{4}\end{array}\)
Thời điểm vận tốc bằng 0 giá trị tuyệt đối của gia tốc của vật là
\(\begin{array}{l}\left| {a\left( {\frac{5}{{24}} + \frac{{5k}}{4}} \right)} \right| = \left| { - 0,64{\pi ^2}\sin \left( {0,8\pi \left( {\frac{5}{{24}} + \frac{{5k}}{4}} \right) + \frac{\pi }{3}} \right)} \right|\\ = 0,64{\pi ^2}\left| {\sin \left( {\frac{\pi }{2} + k\pi } \right)} \right| = 0,64{\pi ^2} \approx 6,32\end{array}\)
Đáp án C
- Bài 9.24 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.25 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.26 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.27 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.28 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức