Bài 9.16 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức>
Cho hàm số (fleft( x right) = 2{sin ^2}left( {x + frac{pi }{4}} right).)
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho hàm số \(f\left( x \right) = 2{\sin ^2}\left( {x + \frac{\pi }{4}} \right).\) Chứng minh rằng \(\left| {f''\left( x \right)} \right| \le 4\) với mọi x.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm tại mỗi điểm \(x \in \left( {a;b} \right).\) Nếu hàm số \(y' = f'\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y'\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x, kí hiệu là \(y''\) hoặc \(f''\left( x \right).\)
Lời giải chi tiết
Ta có \(f'\left( x \right) = 2.2\sin \left( {x + \frac{\pi }{4}} \right).{\left[ {\sin \left( {x + \frac{\pi }{4}} \right)} \right]^,} = 4\sin \left( {x + \frac{\pi }{4}} \right)\cos \left( {x + \frac{\pi }{4}} \right) = 2\sin \left( {2x + \frac{\pi }{2}} \right)\)
\( \Rightarrow f''\left( x \right) = 2.2\cos \left( {2x + \frac{\pi }{2}} \right) = 4\cos \left( {2x + \frac{\pi }{2}} \right)\)
Mặt khác \( - 1 \le \cos \left( {2x + \frac{\pi }{2}} \right) \le 1 \Leftrightarrow - 4 \le f''\left( x \right) \le 4\)
Vậy \(\left| {f''\left( x \right)} \right| \le 4\) với mọi x.
- Bài 9.17 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.15 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.14 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.13 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Giải mục 2 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức