Bài 9.13 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức>
Cho hàm số (fleft( x right) = {x^2}{e^x}.) Tính (f''left( 0 right).)
Đề bài
Cho hàm số \(f\left( x \right) = {x^2}{e^x}.\) Tính \(f''\left( 0 \right).\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm tại mỗi điểm \(x \in \left( {a;b} \right).\) Nếu hàm số \(y' = f'\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y'\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x, kí hiệu là \(y''\) hoặc \(f''\left( x \right).\)
Lời giải chi tiết
Ta có \(f'\left( x \right) = 2x{e^x} + {x^2}{e^x} \Rightarrow f''\left( x \right) = 2\left( {{e^x} + x{e^x}} \right) + 2x{e^x} + {x^2}{e^x} = 2{e^x} + 4x{e^x} + {x^2}{e^x}\)
Vậy \(f''\left( 0 \right) = 2.\)
- Bài 9.14 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.15 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.16 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.17 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Giải mục 2 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức