Bài 9.14 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức>
Tính đạo hàm cấp hai của các hàm số sau:
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = \ln \left( {x + 1} \right);\)
b) \(y = \tan 2x.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Giả sử hàm số \(y = f\left( x \right)\) có đạo hàm tại mỗi điểm \(x \in \left( {a;b} \right).\) Nếu hàm số \(y' = f'\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y'\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x, kí hiệu là \(y''\) hoặc \(f''\left( x \right).\)
Lời giải chi tiết
a) \(y' = \frac{1}{{x + 1}} \Rightarrow y'' = \frac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\)
b) \(y' = \frac{2}{{{{\cos }^2}2x}} \Rightarrow y'' = \frac{{ - 2.{{\left( {{{\cos }^2}2x} \right)}^,}}}{{{{\cos }^4}2x}} = \frac{{ - 2.2\cos 2x.{{\left( {\cos 2x} \right)}^,}}}{{{{\cos }^4}2x}} = \frac{{4.2\sin 2x}}{{{{\cos }^3}2x}} = \frac{{8\sin 2x}}{{{{\cos }^3}2x}}\)
- Bài 9.15 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.16 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.17 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.13 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
- Giải mục 2 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức