Bài 7.5 trang 36 SGK Toán 11 tập 2 – Kết nối tri thức


Cho hình chóp S.ABC có đáy là tam giác cân tại A và SA ( bot ) (ABC). Gọi M là trung điểm của BC. Chứng minh rằng:

Đề bài

Cho hình chóp S.ABC có đáy là tam giác cân tại A và SA \( \bot \) (ABC). Gọi M là trung điểm của BC. Chứng minh rằng:

a) BC \( \bot \) (SAM);

b) Tam giác SBC cân tại S.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc cùng một mặt phẳng thì nó vuông góc với mặt phẳng đó.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Xét tam giác ABC cân tại A có

AM là đường trung tuyến (M là trung điểm BC)

\( \Rightarrow \) AM là đường cao \( \Rightarrow \) \(AM \bot BC\)

Ta có:

 \(\left. \begin{array}{l}AM \bot BC\\SA \bot BC\left( {SA \bot \left( {ABC} \right)} \right)\\AM \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAM} \right)\)

b) \(\left. \begin{array}{l}BC \bot \left( {SAM} \right)\\SM \subset \left( {SAM} \right)\end{array} \right\} \Rightarrow BC \bot SM\)

Xét tam giác SBC có:

+) SM là đường cao \(\left( {BC \bot SM} \right)\)

+) SM là đường trung tuyến (M là trung điểm BC)

\( \Rightarrow \) Tam giác SBC cân tại S.


Bình chọn:
4.2 trên 12 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí