Bài 3 trang 129 Tài liệu dạy – học Toán 9 tập 1


Giải bài tập Cho đường tròn (O). Bốn điểm A, B, C, D

Đề bài

Cho đường tròn (O). Bốn điểm A, B, C, D nằm trên đường tròn theo thứ tự chiều quay kim đồng hồ, sao cho AB = CD, AB và CD cắt nhau tại I.

a) Chứng minh OI là phân giác của góc AID

b) Chứng minh IB = IC ; IA = ID.

Phương pháp giải - Xem chi tiết

a)

+) Chứng minh \(\Delta OAB = \Delta ODC\).

+) Chứng minh \(\Delta IAD\) có \(IA = ID\), từ đó chứng minh \(\Delta IOA = \Delta IOD\).

b) Từ \(AB = CD,\,\,IA = ID \Rightarrow IB = IC\).

Lời giải chi tiết

 

Xét \(\Delta OAB\) và \(\Delta ODC\) có :

\(\begin{array}{l}OA = OD = R\\OB = OC = R\\AB = CD\,\left( {gt} \right)\\ \Rightarrow \Delta OAB = \Delta ODC\,\,\left( {c.c.c} \right) \\\Rightarrow \widehat {OAB} = \widehat {ODC}\end{array}\)

Xét tam giác OAD cân tại O

\( \Rightarrow \widehat {OAD} = \widehat {ODA}\\ \Rightarrow \widehat {OAD} + \widehat {OAB} = \widehat {ODA} + \widehat {ODC} \\\Rightarrow \widehat {IAD} = \widehat {IDA}\)

\( \Rightarrow \Delta IAD\) cân tại I \( \Rightarrow IA = ID\).

Xét \(\Delta IOA\) và \(\Delta IOD\) có

\(\begin{array}{l}IA = ID\,\,\left( {cmt} \right)\\IO\,\,chung\\OA = OD = R\\ \Rightarrow \Delta IOA = \Delta IOD\,\,\left( {c.c.c} \right) \\\Rightarrow \widehat {OIA} = \widehat {OID}\end{array}\)

Vậy OI là phân giác của \(\widehat {AID}\).

b) Ta có \(AB = CD\,\left( {gt} \right),\,\,IA = ID\,\,\left( {cmt} \right)\\ \Rightarrow AB - IA = CD - ID \Rightarrow IB = IC\).

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài