Bài 1 trang 129 Tài liệu dạy – học Toán 9 tập 1


Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho đường tròn tâm O ngoại tiếp tam giác ABC.

Đề bài

Cho đường tròn tâm O ngoại tiếp tam giác ABC. Số đo các góc A, B, C tương ứng là \({50^o},{60^o},{70^o}\). Từ O kẻ các đường thẳng OM, ON, OP lần lượt vuông góc với các dây BC, AC, AB tại M, N, P. So sánh các khoảng cách OM, ON và OP.

Phương pháp giải - Xem chi tiết

Sử dụng các định lí :

- Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.

- Trong một đường tròn, dây lớn hơn thì gần tâm hơn.

Lời giải chi tiết

 

Ta có \(\widehat A < \widehat B < \widehat C\,\,\left( {{{50}^0} < {{60}^0} < {{70}^0}} \right)\) nên \(BC < AC < AB\) (trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn).

Do đó \(OM > ON > OP\) (trong một đường tròn, dây lớn hơn thì gần tâm hơn).

 Loigiaihay.com

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com