Bài 1.5 trang 16 SGK Toán 11 tập 1 - Kết nối tri thức


Chứng minh các đẳng thức:

Đề bài

Chứng minh các đẳng thức:

a) \({\cos ^4}\alpha  - {\sin ^4}\alpha  = 2{\cos ^2}\alpha  - 1\);                

b) \(\frac{{{{\cos }^2}\alpha  + {{\tan }^2}\alpha  - 1}}{{{{\sin }^2}\alpha }} = {\tan ^2}\alpha \).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng các hệ thức lượng giác cơ bản, các hằng đẳng thức đáng nhớ và sử dụng giá trị lượng giác để biến đổi.

Khi chứng minh một đẳng thức ta có thể biến đổi vế này thành vế kia, biến đổi tương đương.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a)

Ta có:

\({\cos ^4}\alpha - {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) \\= {\cos ^2}\alpha  - {\sin ^2}\alpha = {\cos ^2}\alpha  - (1 - {\cos ^2}\alpha ) \\= {\cos ^2}\alpha  - 1 + {\cos ^2}\alpha  = 2{\cos ^2}\alpha  - 1\)

(đpcm)

b)

Ta có:

\(\frac{{{{\cos }^2}\alpha  + {{\tan }^2}\alpha  - 1}}{{{{\sin }^2}\alpha }} = \frac{{{{\cos }^2}\alpha \; + {{\tan }^2}\alpha  - {{\sin }^2}\alpha  - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{{{{\tan }^2}\alpha  - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{1}{{{{\cos }^2}\alpha }} - 1 = {\tan ^2}\alpha \)

(đpcm)


Bình chọn:
4.6 trên 21 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí