Bài 1.28 trang 40 SGK Toán 11 tập 1 - Kết nối tri thức


Trong các hàm số sau đây, hàm số nào là hàm tuần hoàn?

Đề bài

Trong các hàm số sau đây, hàm số nào là hàm tuần hoàn?

A. \(y = \tan x + x\)    

B. \(y = {x^2} + 1\)              

C. \(y = \cot x\)                      

D. \(y = \frac{{\sin x}}{x}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Xét tính tuần hoàn của hàm số

- Xét hàm số \(y = f\left( x \right)\), tập xác định là D

- Với mọi \(x \in D\), ta có \(x - {T_0}\; \in D\) và \(x + {T_0} \in D\;\) Chỉ ra \(f\left( {x + {T_0}} \right) = f\left( x \right)\; = f\left( {x - {T_0}} \right)\)

Vậy hàm số \(y = f\left( x \right)\) tuần hoàn

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Hàm \(y = \cot x\) là hàm tuần hoàn với chu kì \(T = \pi \) do :

- Tập xác định là \(D = R\backslash \left\{ {k\pi ;k \in Z} \right\}\)

- Với mọi \(x \in D\), ta có \(x - \pi \; \in D\) và \(x + \pi  \in D\;\)

Suy ra

 \(\begin{array}{l}f\left( {x + \pi } \right) = \cot \left( {x + \pi } \right) = \cot \left( x \right) = f(x)\\f\left( {x - \pi } \right) = \cot \left( {x - \pi } \right) = \cot \left( x \right) = f\left( x \right)\end{array}\)

=> Chọn đáp án C


Bình chọn:
4.4 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí