Lý thuyết Góc ở tâm, góc nội tiếp Toán 9 Chân trời sáng tạo
1. Góc ở tâm Định nghĩa Góc ở tâm là góc có đỉnh trùng với tâm đường tròn.
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
1. Góc ở tâm
Định nghĩa
Góc ở tâm là góc có đỉnh trùng với tâm đường tròn. |
2. Cung, số đo cung
Cung
Mỗi phần đường tròn giới hạn bởi hai điểm A, B trên đường tròn gọi là một cung AB, kí hiệu là . |
Ví dụ:
Góc ở tâm chắn cung AnB hay cung AnB bị chắn bởi góc ở tâm .
là cung nhỏ và là cung lớn.
Số đo cung
- Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. - Số đo của cung lớn bằng: - số đo cung nhỏ có chung đầu mút với cung lớn. - Số đo của cung nửa đường tròn bằng . - Số đo của cung AB được kí hiệu là sđ. |
Chú ý:
- Cung nhỏ có số đo nhỏ hơn , cung lớn có số đo lớn hơn . Cung nửa đường tròn có số đo .
- Khi hai mút của cung trùng nhau, ta có cung không với số đo và cung cả đường tròn có số đo .
- Một cung có số đo thường được gọi tắt là cung .
- Trong một đường tròn, hai cung được gọi là bằng nhau nếu chúng có số đo bằng nhau.
3. Góc nội tiếp
Định nghĩa
Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó. Cung nằm bên trong của góc được gọi là cung bị chắn. |
Số đo góc nội tiếp
Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. |
Ví dụ:
là góc nội tiếp chắn trên đường tròn (O) nên sđ.
Chú ý: Trong một đường tròn:
- Các góc nội tiếp bằng nhau chắn các cung bằng nhau.
- Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
- Góc nội tiếp nhỏ hơn hoặc bằng có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
Góc nội tiếp chắn nửa đường tròn là góc vuông.
- Giải mục 1 trang 90, 91 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải mục 2 trang 91, 92, 93 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải mục 3 trang 93, 94, 95 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 1 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 2 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay