Lý thuyết Dấu của tam thức bậc hai - SGK Toán 10 Chân trời sáng tạo>
A. Lý thuyết 1. Tam thức bậc hai
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
A. Lý thuyết
1. Tam thức bậc hai
Đa thức bậc hai \(f(x) = a{x^2} + bx + c\) với a, b, c là các hệ số, \(a \ne 0\) và x là biến số được gọi là tam thức bậc hai. |
Khi thay x bằng giá trị \({x_0}\) vào f(x), ta được \(f({x_0}) = a{x_0}^2 + b{x_0} + c\), gọi là giá trị của tam thức bậc hai.
- Nếu \(f({x_0}) > 0\) thì ta nói \(f({x_0})\) dương tại \({x_0}\).
- Nếu \(f({x_0}) < 0\) thì ta nói \(f({x_0})\) âm tại \({x_0}\).
- Nếu f(x) dương (âm) tại mọi điểm x thuộc một khoảng hoặc một đoạn thì ta nói f(x) dương (âm) trên khoảng hoặc đoạn đó.
Cho tam thức bậc hai \(f(x) = a{x^2} + bx + c\) \((a \ne 0)\). Khi đó: - Nghiệm của phương trình bậc hai \(a{x^2} + bx + c = 0\) là nghiệm của f(x). - Biểu thức \(\Delta = {b^2} - 4ac\) và \(\Delta ' = {\left( {\frac{b}{2}} \right)^2} - ac\) lần lượt là biệt thức và biệt thức thu gọn của f(x). |
2. Định lí về dấu của tam thức bậc hai
Mối quan hệ giữa dấu của tam thức bậc hai với dấu của hệ số a trong từng trường hợp của được phát biểu trong định lí về dấu của tam thức bậc hai sau đây:
Cho tam thức bậc hai \(f(x) = a{x^2} + bx + c\) \((a \ne 0)\). - Nếu \(\Delta < 0\) thì f(x) cùng dấu với hệ số a \(\forall x \in \mathbb{R}\). - Nếu \(\Delta = 0\) và \({x_0} = - \frac{b}{{2a}}\) là nghiệm kép của f(x) thì f(x) cùng dấu với hệ số a với mọi \(x \ne {x_0}\). - Nếu \(\Delta > 0\) thì tam thức f(x) có hai nghiệm phân biệt \({x_1}\) và \({x_2}\) \(({x_1} < {x_2})\). Khi đó: + f(x) cùng dấu với hệ số a \(\forall x \in ( - \infty ;{x_1}) \cup ({x_2}; + \infty )\). + f(x) trái dấu với hệ số a \(\forall x \in ({x_1};{x_2})\). |
Chú ý: Để xét dấu tam thức bậc hai \(f(x) = a{x^2} + bx + c\)\((a \ne 0)\), ta thực hiện các bước sau:
B1: Tính và xét dấu của biệt thức \(\Delta \).
B2: Xác định nghiệm của f(x) (nếu có).
B3: Xác định dấu của hệ số a.
B4: Xác định dấu của f(x).
B. Bài tập
Bài 1: Hãy cho biết biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại x = 2.
A. \(3x + 2\sqrt x + 1\)
B. \( - 5{x^4} + 3{x^2} + 4\)
C. \( - \frac{2}{3}{x^2} + 7x - 4\)
D. \({\left( {\frac{1}{x}} \right)^2} + 2\frac{1}{x} + 3\)
Giải:
\( - \frac{2}{3}{x^2} + 7x - 4\) là tam thức bậc hai với \(a = - \frac{2}{3},b = 7,c = - 4\).
\(f(2) = - \frac{2}{3}{.2^2} + 7.2 - 4 = \frac{{22}}{3} > 0\) nên f(x) dương tại x = 2.
Bài 2: Xét dấu các tam thức bậc hai sau đây:
a) \({x^2} + x + 1\).
b) \( - \frac{3}{2}{x^2} + 9x - \frac{{27}}{2}\).
c) \(2{x^2} + 6x - 8\).
Giải:
a) \(f(x) = {x^2} + x + 1\) có \(\Delta = - 3 < 0\) và \(a = 1 > 0\) nên f(x) > 0 với mọi \(x \in \mathbb{R}\).
b) \(f(x) = - \frac{3}{2}{x^2} + 9x - \frac{{27}}{2}\) có \(\Delta = 0\) và \(a = - \frac{3}{2} < 0\) nên f(x) có nghiệm kép x = 3 và f(x) < 0 với mọi \(x \ne 3\).
c) Dễ thấy \(f(x) = 2{x^2} + 6x - 8\) có \(\Delta ' = 25 > 0\), a = 2 > 0 và có hai nghiệm phân biệt \({x_1} = - 4\), \({x_2} = 1\). Do đó ta có bảng xét dấu:
Suy ra f(x) > 0 với mọi \(x \in ( - \infty ; - 4) \cup (1; + \infty )\) và f(x) < 0 với mọi \(x \in ( - 4;1)\).
- Giải mục 1 trang 6, 7 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải mục 2 trang 8, 9 SGK Toán 10 tập 2 - Chân trời sáng tạo
- Giải bài 1 trang 9 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 2 trang 9 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 3 trang 10 SGK Toán 10 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Quy tắc cộng và quy tắc nhân - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Quy tắc cộng và quy tắc nhân - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo