Giải mục 2 trang 68,69,70 SGK Toán 12 tập 2 - Kết nối tri thức>
CÔNG THỨC NHÂN XÁC SUẤT
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
HĐ2
Trả lời câu hỏi Hoạt động 2 trang 68 SGK Toán 12 Kết nối tri thức
Chứng minh rằng, với hai biến cố A và B, \(P\left( B \right) > 0\), ta có: \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\).
Phương pháp giải:
Sử dụng kiến thức về công thức tính xác suất có điều kiện để chứng minh: Cho hai biến cố A và B bất kì, với \(P\left( B \right) > 0\). Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\)
Lời giải chi tiết:
Với hai biến cố A và B, \(P\left( B \right) > 0\), ta có \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\) nên \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\)
LT4
Trả lời câu hỏi Luyện tập 4 trang 69 SGK Toán 12 Kết nối tri thức
Trở lại Ví dụ 4. Tính xác suất để:
a) Sơn lấy được bút bi xanh và Tùng lấy được bút bi đen;
b) Hai chiếc bút lấy ra có cùng màu.
Phương pháp giải:
Sử dụng kiến thức về công thức nhân xác suất để tính: Với hai biến cố A, B bất kì ta có: \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\).
Lời giải chi tiết:
a) Gọi A là biến cố: “Bạn Sơn lấy được bút bi xanh”; B là biến cố: “Bạn Tùng lấy được bút bi đen”.
Vì \(n\left( A \right) = 7\) nên \(P\left( A \right) = \frac{7}{{12}}\)
Nếu A xảy ra tức là bạn Sơn lấy được bút bi xanh thì trong hộp có 11 bút bi với 5 bút bi đen. Do đó, \(P\left( {B|A} \right) = \frac{5}{{11}}\)
Theo công thức nhân xác suất ta có: \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{7}{{12}}.\frac{5}{{11}} = \frac{{35}}{{132}}\)
b) Dựa vào sơ đồ cây trong Ví dụ 4, xác suất để lấy ra hai bút có cùng màu là: \(\frac{5}{{12}}.\frac{4}{{11}} + \frac{7}{{12}}.\frac{6}{{11}} = \frac{{31}}{{66}}\)
VD
Trả lời câu hỏi Vận dụng trang 69 SGK Toán 12 Kết nối tri thức
Trở lại trò chơi “Ô cửa bí mật” trong tình huống mở đầu. Giả sử người chơi chọn cửa số 1 và người quản trò mở cửa số 3.
Kí hiệu \({E_1};{E_2};{E_3}\) tương ứng là các biến cố: “Sau ô cửa số 1 có ô tô”; “Sau ô cửa số 2 có ô tô”; “Sau ô cửa số 3 có ô tô” và H là biến cố: “Người quản trò mở ô cửa số 3 thấy có con lừa”.
Sau khi người quản trò mở cánh cửa số 3 thấy con lừa, tức là khi H xảy ra. Để quyết định thay đổi lựa chọn hay không, người chơi cần so sánh hai xác suất có điều kiện: \(P\left( {{E_1}|H} \right)\) và \(P\left( {{E_2}|H} \right)\).
a) Chứng minh rằng:
- \(P\left( {{E_1}} \right) = P\left( {{E_2}} \right) = P\left( {{E_3}} \right) = \frac{1}{3}\);
- \(P\left( {H|{E_1}} \right) = \frac{1}{2}\) và \(P\left( {H|{E_2}} \right) = 1\).
b) Sử dụng công thức tính xác suất có điều kiện và công thức nhân xác suất, chứng minh rằng:
- \(P\left( {{E_1}|H} \right) = \frac{{P\left( {{E_1}} \right).P\left( {H|{E_1}} \right)}}{{P\left( H \right)}}\);
- \(P\left( {{E_2}|H} \right) = \frac{{P\left( {{E_2}} \right).P\left( {H|{E_2}} \right)}}{{P\left( H \right)}}\).
c) Từ các kết quả trên hãy suy ra: \(P\left( {{E_2}|H} \right) = 2P\left( {{E_1}|H} \right)\).
Từ đó hãy đưa ra lời khuyên cho người chơi: Nên giữ nguyên sự lựa chọn ban đầu hay chuyển sang cửa chưa mở còn lại?
Hướng dẫn: Nếu \({E_1}\) xảy ra, tức là sau cửa sổ 1 có ô tô. Khi đó, sau cửa số 2 và 3 là con lừa. Người quản trò chọn ngẫu nhiên một trong hai cửa số 2 và 3 để mở ra. Do đó, việc chọn cửa số 2 hay cửa số 3 có khả năng như nhau. Vậy \(P\left( {H|{E_1}} \right) = \frac{1}{2}\).
Nếu \({E_2}\) xảy ra, tức là cửa số 2 có ô tô. Khi đó, người quản trò chắc chắn phải mở cửa số 3. Do đó \(P\left( {H|{E_2}} \right) = 1\).
Phương pháp giải:
Sử dụng kiến thức về công thức tính xác suất có điều kiện để chứng minh: Cho hai biến cố A và B bất kì, với \(P\left( B \right) > 0\). Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\)
Sử dụng kiến thức về công thức nhân xác suất để tính: Với hai biến cố A, B bất kì ta có: \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\)
Lời giải chi tiết:
a) Vì chỉ có một chiếc ô tô đằng sau ba cánh cửa nên \(P\left( {{E_1}} \right) = P\left( {{E_2}} \right) = P\left( {{E_3}} \right) = \frac{1}{3}\).
Nếu \({E_1}\) xảy ra, tức là sau cửa sổ 1 có ô tô. Khi đó, sau cửa số 2 và 3 là con lừa. Người quản trò chọn ngẫu nhiên một trong hai cửa số 2 và 3 để mở ra. Do đó, việc chọn cửa số 2 hay cửa số 3 có khả năng như nhau. Vậy \(P\left( {H|{E_1}} \right) = \frac{1}{2}\).
Nếu \({E_2}\) xảy ra, tức là cửa số 2 có ô tô. Khi đó, người quản trò chắc chắn phải mở cửa số 3. Do đó \(P\left( {H|{E_2}} \right) = 1\).
b) Ta có: \(P\left( {{E_1}|H} \right) = \frac{{P\left( {{E_1}H} \right)}}{{P\left( H \right)}} = \frac{{P\left( {{E_1}} \right).P\left( {H|{E_1}} \right)}}{{P\left( H \right)}}\),
\(P\left( {{E_2}|H} \right) = \frac{{P\left( {{E_2}H} \right)}}{{P\left( H \right)}} = \frac{{P\left( {{E_2}} \right).P\left( {H|{E_2}} \right)}}{{P\left( H \right)}}\).
c) Vì \(P\left( {{E_1}|H} \right) = \frac{{P\left( {{E_1}} \right).P\left( {H|{E_1}} \right)}}{{P\left( H \right)}}\), \(P\left( {{E_2}|H} \right) = \frac{{P\left( {{E_2}} \right).P\left( {H|{E_2}} \right)}}{{P\left( H \right)}}\), \(P\left( {H|{E_1}} \right) = \frac{1}{2}\) và \(P\left( {H|{E_2}} \right) = 1\) nên \(P\left( {{E_2}|H} \right) = 2P\left( {{E_1}|H} \right)\) do đó người đó nên chuyển sang cửa còn lại.
- Giải bài tập 6.1 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.2 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.3 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.4 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.5 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức