Giải bài tập 6.2 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức


Cho \(P\left( A \right) = 0,2;P\left( B \right) = 0,51;P\left( {B|A} \right) = 0,8\). Tính \(P\left( {A|B} \right)\).

Đề bài

Cho \(P\left( A \right) = 0,2;P\left( B \right) = 0,51;P\left( {B|A} \right) = 0,8\). Tính \(P\left( {A|B} \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về công thức tính xác suất có điều kiện để tính: Cho hai biến cố A và B bất kì, với \(P\left( B \right) > 0\). Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\)

Sử dụng kiến thức về công thức nhân xác suất để tính: Với hai biến cố A, B bất kì ta có: \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\)

Lời giải chi tiết

Ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,2.0,8}}{{0,51}} = \frac{{16}}{{51}}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí