Giải bài tập 6.3 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức>
Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để: a) Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 nếu biết rằng ít nhất có một con xúc xắc xuất hiện mặt 5 chấm; b) Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm nếu biết rằng tổng số chấm xuất hiện trên hai con xúc xắc bằng 7.
Đề bài
Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để:
a) Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 nếu biết rằng ít nhất có một con xúc xắc xuất hiện mặt 5 chấm;
b) Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm nếu biết rằng tổng số chấm xuất hiện trên hai con xúc xắc bằng 7.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức tính xác suất có điều kiện để tính: Cho hai biến cố A và B bất kì, với \(P\left( B \right) > 0\). Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Gieo hai con xúc xắc cân đối, đồng chất thì số phần tử của không gian mẫu là \(n\left( \Omega \right) = 6.6 = 36\)
Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”, B là biến cố “ít nhất có một con xúc xắc xuất hiện mặt 5 chấm”.
Khi đó biến cố AB là: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 và ít nhất có một con xúc xắc xuất hiện mặt 5 chấm”.
Tập hợp các kết quả thuận lợi của biến cố A là: \(\left\{ {\left( {1;6} \right);\left( {2;5} \right);\left( {3;4} \right);\left( {4;3} \right);\left( {5;2} \right);\left( {6;1} \right)} \right\}\) nên \(n\left( A \right) = 6\). Do đó, \(P\left( A \right) = \frac{6}{{36}}\)
Tập hợp các kết quả thuận lợi của biến cố B là:
\(\left\{ {\left( {1;5} \right);\left( {2;5} \right);\left( {3;5} \right)\left( {4;5} \right);\left( {5;5} \right);\left( {6;5} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;6} \right)} \right\}\) nên \(n\left( B \right) = 11\)
Do đó, \(P\left( B \right) = \frac{{11}}{{36}}\)
Tập hợp các kết quả thuận lợi của biến cố AB là: \(\left\{ {\left( {2;5} \right);\left( {5;2} \right)} \right\}\) nên \(n\left( {AB} \right) = 2\)
Do đó, \(P\left( {AB} \right) = \frac{2}{{36}}\)
a) Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{2}{{11}}\).
b) Vậy \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{2}{6} = \frac{1}{3}\).
- Giải bài tập 6.4 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.5 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.6 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.2 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 6.1 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức