Giải mục 2 trang 17, 18 SGK Toán 12 tập 1 - Cùng khám phá>
Cho hàm số \(y = \frac{{x + 1}}{{x - 2}}\)có đồ thị (C ) như Hình 1.17. a) Nêu nhận xét về khoảng cách từ điểm \(M(x;y) \in (C)\)đến đường thảng x=2 khi \(x \to 2\) b) Tính các giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} f(x)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f(x)\)
HĐ2
Trả lời câu hỏi Hoạt động 2 trang 17 SGK Toán 12 Cùng khám phá
Cho hàm số \(y = \frac{{x + 1}}{{x - 2}}\)có đồ thị (C ) như Hình 1.17.
a) Nêu nhận xét về khoảng cách từ điểm \(M(x;y) \in (C)\)đến đường thảng x=2 khi \(x \to 2\)
b) Tính các giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} f(x)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f(x)\)
Phương pháp giải:
a) Nhìn đồ thị hàm số rồi nhận xét
b) Phân tích, rồi tính \(\mathop {\lim }\limits_{x \to {2^ + }} f(x)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f(x)\)
Lời giải chi tiết:
a) Dựa vào đồ thị hàm số ta thấy:
Khi và thì khoảng cách giữa đồ thị (C) với đường thẳng x = 2 càng nhỏ
b) Ta có \(f\left( x \right)\; = \frac{{x + 1}}{{x - 2}} = 1 + \frac{3}{{x - 2}} = + \infty \;\;\)
\(f\left( x \right)\; = \frac{{x + 1}}{{x - 2}} = 1 + \frac{3}{{x - 2}} = - \infty \;\;\)
LT2
Trả lời câu hỏi Luyện tập 2 trang 18 SGK Toán 12 Cùng khám phá
Cho hàm số \(y = f(x) = \frac{{\sqrt {{x^2} + 1} }}{{x + 1}}\) có đồ thị là đường cong như hình 1.20. Hãy xác nhận các đường tiệm cận đứng và đường tiệm cận ngang của hàm số đã cho.
Phương pháp giải:
Xét \(f(x).\)
Lời giải chi tiết:
Ta có \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right)\;\)=\(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = - \infty \;\), \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right)\;\)=\(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = + \infty \;\)
Suy ra x = - 1 là đường tiệm cận đứng của hàm số.
Ta có \(\mathop {\lim }\limits_{x \to + \infty } f(x)\; = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + \frac{1}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = 1\;\;\), \(\mathop {\lim }\limits_{x \to - \infty } f(x)\; = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 + \frac{1}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = 1\;\;\)
Suy ra y = 1 là đường tiệm cận ngang của hàm số.
- Giải mục 3 trang 19, 20, 21 SGK Toán 12 tập 1 - Cùng khám phá
- Giải bài tập 1.14 trang 21 SGK Toán 12 tập 1 - Cùng khám phá
- Giải bài tập 1.15 trang 21 SGK Toán 12 tập 1 - Cùng khám phá
- Giải bài tập 1.16 trang 22 SGK Toán 12 tập 1 - Cùng khám phá
- Giải bài tập 1.17 trang 22 SGK Toán 12 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục