Giải bài tập 1.16 trang 22 SGK Toán 12 tập 1 - Cùng khám phá


Tìm các đường tiệm cận của mỗi hàm số a) \(y = {x^3} - 2x + x - 9\) b) \(y = \frac{{x - 5}}{{4x + 2}}\) c) \(y = \frac{{{x^2} - 3x + 4}}{{2x + 1}}\) d) \(y = 2x - 1 + \frac{2}{{x + 1}}\)

Đề bài

Tìm các đường tiệm cận của mỗi hàm số

a)    \(y = {x^3} - 2x + x - 9\)

b)    \(y = \frac{{x - 5}}{{4x + 2}}\)

c)    \(y = \frac{{{x^2} - 3x + 4}}{{2x + 1}}\)

d)    \(y = 2x - 1 + \frac{2}{{x + 1}}\)

Phương pháp giải - Xem chi tiết

Xét giới hạn các hàm số và áp dụng ghi chú: hàm số \(y = \frac{{a{x^2} + bx + c}}{{mx + n}}\) (\(a \ne 0,m \ne 0\)  đa thức tử không chia hết cho đa thức mẫu) luôn được viết dưới dạng \(y = px + q + \frac{r}{{mx + n}}\)\((p,q,r \in R)\). Khi đó đồ thị hàm số có đường tiệm cận đứng \(x =  - \frac{n}{m}\)là và đường tiệm cận xiên là\(y = px + q\).

Lời giải chi tiết

a) \(y = {x^3} - 2x + x - 9\)

Hàm số xác định trên R nên hàm số không có tiệm cận đứng.

Lại có vì y là hàm đa thức nên không có tiệm cận ngang.

b) \(y = \frac{{x - 5}}{{4x + 2}}\)

Ta có \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{x - 5}}{{4x + 2}} = \frac{1}{4},\mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 5}}{{4x + 2}} = \frac{1}{4}.\)

Suy ra y =\(\;\frac{1}{4}\) là đường tiệm cận ngang của hàm số.

Ta có \(\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ + }} \frac{{x - 5}}{{4x + 2}} =  - \infty ,\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ - }} \frac{{x - 5}}{{4x + 2}} =  + \infty \).

Suy ra \(x = \frac{{ - 1}}{2}\) đường tiệm cận đứng của hàm số.

c) \(y = \frac{{{x^2} - 3x + 4}}{{2x + 1}}\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} - 3x + 4}}{{2x + 1}} =  + \infty ,\mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} - 3x + 4}}{{2x + 1}} =  - \infty \).

Suy ra hàm số không có đường tiệm cận ngang.

Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ + }} \frac{{{x^2} - 3x + 4}}{{2x + 1}} =  + \infty ,\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ - }} \frac{{{x^2} - 3x + 4}}{{2x + 1}} =  - \infty \)

Suy ra \(x = \frac{{ - 1}}{2}\) là tiệm cận đứng của đồ thị.

Ta có: \(\frac{{{x^2} - 3x + 4}}{{2x + 1}} = \frac{x}{2} - \frac{7}{4} + \frac{{23}}{{4(2x + 1)}}\)

\( \Rightarrow \mathop {\lim }\limits_{x \to  + \infty } \left( {y - \frac{x}{2} + \frac{7}{4}} \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{23}}{{4(2x + 1)}} = 0,\mathop {\lim }\limits_{x \to  - \infty } \left( {y - \frac{x}{2} + \frac{7}{4}} \right) = \mathop {\lim }\limits_{x \to  - \infty } \frac{{23}}{{4(2x + 1)}} = 0.\)

Suy ra \(y = \frac{x}{2} - \frac{7}{4}\) là tiệm cận xiên của đồ thị.

d) \(y = 2x - 1 + \frac{2}{{x + 1}}\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } y = 2x - 1 + \frac{2}{{x + 1}} =  + \infty ,\mathop {\lim }\limits_{x \to  - \infty } y = 2x - 1 + \frac{2}{{x + 1}} =  - \infty .\)

Suy ra hàm số không có đường tiệm cận ngang.

Ta có: \(\mathop {\lim }\limits_{x \to  - {1^ + }} y = 2x - 1 + \frac{2}{{x + 1}} =  + \infty ,\mathop {\lim }\limits_{x \to  - {1^ - }} 2x - 1 + \frac{2}{{x + 1}} =  - \infty .\)

Suy ra \(x =  - 1\) là tiệm cận đứng của đồ thị.

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \left( {y - 2x + 1} \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{{x + 1}} = 0,\mathop {\lim }\limits_{x \to  + \infty } \left( {y - 2x + 1} \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{2}{{x + 1}} = 0.\)

Suy ra \(y = 2x - 1\) là tiệm cận xiên của đồ thị.

Hàm số có đường tiệm cận đứng là \(x =  - 1\)và đường tiệm cận xiên là \(y = 2x - 1\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí