Giải bài tập 5.25 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức>
Trong không gian Oxyz, cho mặt cầu (S) có phương trình \({\left( {x - \frac{1}{2}} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 9\). Xác định tâm và bán kính của (S).
Đề bài
Trong không gian Oxyz, cho mặt cầu (S) có phương trình \({\left( {x - \frac{1}{2}} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 9\).
Xác định tâm và bán kính của (S).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình mặt cầu để xác định tâm và bán kính của mặt cầu: Trong không gian Oxyz, mặt cầu (S) tâm \(I\left( {a;{\rm{ }}b;{\rm{ }}c} \right)\), bán kính R có phương trình \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
Ta viết lại phương trình mặt cầu (S) dưới dạng: \({\left( {x - \frac{1}{2}} \right)^2} + {\left[ {y - \left( { - 1} \right)} \right]^2} + {\left( {z - 0} \right)^2} = {3^2}\)
Do đó, mặt cầu (S) có tâm \(I\left( {\frac{1}{2}; - 1;0} \right)\) và bán kính \(R = 3\).
- Giải bài tập 5.26 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.27 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.28 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.29 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.30 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức