

Giải bài tập 5.25 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
Trong không gian Oxyz, cho mặt cầu (S) có phương trình (x−12)2+(y+1)2+z2=9. Xác định tâm và bán kính của (S).
Đề bài
Trong không gian Oxyz, cho mặt cầu (S) có phương trình (x−12)2+(y+1)2+z2=9.
Xác định tâm và bán kính của (S).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình mặt cầu để xác định tâm và bán kính của mặt cầu: Trong không gian Oxyz, mặt cầu (S) tâm I(a;b;c), bán kính R có phương trình (x−a)2+(y−b)2+(z−c)2=R2.
Lời giải chi tiết
Ta viết lại phương trình mặt cầu (S) dưới dạng: (x−12)2+[y−(−1)]2+(z−0)2=32
Do đó, mặt cầu (S) có tâm I(12;−1;0) và bán kính R=3.


- Giải bài tập 5.26 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.27 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.28 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.29 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.30 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức