Giải bài tập 5.29 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức>
Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình mặt cầu? Xác định tâm và tính bán kính của mặt cầu đó. a) \({x^2} + {y^2} + {z^2} - 2x - 5z + 30 = 0\); b) \({x^2} + {y^2} + {z^2} - 4x + 2y - 2z = 0\); c) \({x^3} + {y^3} + {z^3} - 2x + 6y - 9z - 10 = 0\); d) \({x^2} + {y^2} + {z^2} + 5 = 0\).
Đề bài
Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình mặt cầu? Xác định tâm và tính bán kính của mặt cầu đó.
a) \({x^2} + {y^2} + {z^2} - 2x - 5z + 30 = 0\);
b) \({x^2} + {y^2} + {z^2} - 4x + 2y - 2z = 0\);
c) \({x^3} + {y^3} + {z^3} - 2x + 6y - 9z - 10 = 0\);
d) \({x^2} + {y^2} + {z^2} + 5 = 0\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình mặt cầu để tính: Với a, b, c, d là các hằng số, phương trình \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) có thể viết lại thành \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {a^2} + {b^2} + {c^2} - d\) và là phương trình của một mặt cầu (S) khi và chỉ khi \({a^2} + {b^2} + {c^2} - d > 0\). Khi đó, (S) có tâm \(I\left( {a;{\rm{ }}b;{\rm{ }}c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Lời giải chi tiết
a) Phương trình đã cho tương ứng với \(a = 1,b = 0,c = \frac{5}{2},d = 30\).
Ta có: \({a^2} + {b^2} + {c^2} - d = {1^2} + {0^2} + {\left( {\frac{5}{2}} \right)^2} - 30 = \frac{{ - 91}}{4} < 0\). Do đó, phương trình đã cho không phải là phương trình của một mặt cầu.
b) Phương trình đã cho tương ứng với \(a = 2,b = - 1,c = 1,d = 0\).
Ta có: \({a^2} + {b^2} + {c^2} - d = {2^2} + {\left( { - 1} \right)^2} + {1^2} - {0^2} = 6 > 0\). Do đó, phương trình đã cho là phương trình của một mặt cầu có tâm \(\left( {2; - 1;1} \right)\) và bán kính \(R = \sqrt 6 \).
c) Phương trình đã cho không phải là phương trình mặt cầu.
d) Phương trình đã cho tương ứng với \(a = 0,b = 0,c = 0,d = 5\).
Ta có: \({a^2} + {b^2} + {c^2} - d = {0^2} + {0^2} + {0^2} - {5^2} = - 25 < 0\). Do đó, phương trình đã cho không phải là phương trình của một mặt cầu.
- Giải bài tập 5.30 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.28 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.27 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.26 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 5.25 trang 59 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức