Giải bài tập 4 trang 86 SGK Toán 12 tập 2 - Cánh diều>
Cho mặt cầu có phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 7} \right)^2} = 100\). a) Xác định tâm và bán kính của mặt cầu. b) Mỗi điểm A(1; 1; 1), B(9; 4; 7), C(9; 9; 10) nằm trong, nằm ngoài hay nằm trên mặt cầu đó?
Đề bài
Cho mặt cầu có phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 7} \right)^2} = 100\).
a) Xác định tâm và bán kính của mặt cầu.
b) Mỗi điểm A(1; 1; 1), B(9; 4; 7), C(9; 9; 10) nằm trong, nằm ngoài hay nằm trên mặt cầu đó?
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về phương trình mặt cầu để tìm tọa độ tâm, bán kính của mặt cầu: Phương trình mặt cầu tâm \(I\left( {a;b;c} \right)\), bán kính R có là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
b) Sử dụng kiến thức về vị trí của điểm so với mặt cầu để tìm bán kính của mặt cầu: Cho mặt cầu tâm I, bán kính R và điểm M bất kì trong không gian. Khi đó:
+ Điểm M thuộc mặt cầu tâm I, bán kính R khi và chỉ khi \(IM = R\).
+ Điểm M nằm ngoài mặt cầu tâm I, bán kính R khi và chỉ khi \(IM > R\).
+ Điểm M nằm trong mặt cầu tâm I, bán kính R khi và chỉ khi \(IM < R\).
Lời giải chi tiết
a) Ta có: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 7} \right)^2} = 100\)
\( \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - \left( { - 2} \right)} \right)^2} + {\left( {z - 7} \right)^2} = {10^2}\)
Do đó, mặt cầu đã cho có tâm I(1; -2; 7) và bán kính \(R = 10\).
b) Ta có: \(IA = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {1 - \left( { - 2} \right)} \right)}^2} + {{\left( {1 - 7} \right)}^2}} = \sqrt {45} < R\) nên điểm A nằm trong mặt cầu đã cho.
\(IB = \sqrt {{{\left( {9 - 1} \right)}^2} + {{\left( {4 - \left( { - 2} \right)} \right)}^2} + {{\left( {7 - 7} \right)}^2}} = 10 = R\) nên điểm B nằm trên mặt cầu đã cho.
\(IC = \sqrt {{{\left( {9 - 1} \right)}^2} + {{\left( {9 - \left( { - 2} \right)} \right)}^2} + {{\left( {10 - 7} \right)}^2}} = \sqrt {194} > R\) nên điểm C nằm ngoài mặt cầu đã cho.
- Giải bài tập 5 trang 86 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 7 trang 86 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 3 trang 86 SGK Toán 12 tập 2 - Cánh diều
- Giải bài tập 2 trang 85 SGK Toán 12 tập 2 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục