Giải bài tập 2 trang 103 SGK Toán 12 tập 2 - Cánh diều>
Một chiếc hộp có 40 viên bi, trong đó có 12 viên bi màu đỏ và 28 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Ngân lấy ngẫu nhiên viên bi từ chiếc hộp đó hai lần, mỗi lần lấy ra một viên bi và viên bi được lấy ra không bỏ lại hộp. Tính xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng.
Đề bài
Một chiếc hộp có 40 viên bi, trong đó có 12 viên bi màu đỏ và 28 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Ngân lấy ngẫu nhiên viên bi từ chiếc hộp đó hai lần, mỗi lần lấy ra một viên bi và viên bi được lấy ra không bỏ lại hộp. Tính xác suất để cả hai lần bạn Ngân đều lấy ra được viên bi màu vàng.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, kí hiệu là P(A|B). Nếu \(P\left( B \right) > 0\) thì \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết
Xét hai biến cố: A: “Viên bi lấy ra lần thứ nhất là viên bi vàng”; B: “Viên bi lấy ra lần thứ hai là viên bi vàng”.
Ban đầu có 28 trong 40 viên bi là bi vàng. Xác suất để lấy được bi vàng lần đầu là \(P(A) = \frac{{28}}{{40}}\).
Sau khi lấy ra viên bi vàng lần thứ nhất, còn 27 viên bi vàng trong 39 viên bi còn lại. Xác suất để lần thứ hai lấy ra viên bi vàng biết lần đầu đã lấy được bi vàng là \(P(B|A) = \frac{{27}}{{39}}\).
Áp dụng công thức nhân xác suất, ta có xác suất hai lần đều lấy được bi vàng là \(P(A \cap B) = P(A).P(B|A) = \frac{{28}}{{40}}.\frac{{27}}{{39}} = \frac{{63}}{{130}}\).


Các bài khác cùng chuyên mục