Giải bài tập 1.10 trang 18 SGK Toán 9 tập 1 - Cùng khám phá


Giải các hệ phương trình sau bằng phương pháp cộng đại số: a) \(\left\{ \begin{array}{l}2x - 5y = 8\\2x - 7y = 0\end{array} \right.\) b) \(\left\{ \begin{array}{l}4x + 3y = 6\\2x + y = 4\end{array} \right.\) c) \(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5\end{array} \right.\)

Đề bài

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{ \begin{array}{l}2x - 5y = 8\\2x - 7y = 0\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x + 3y = 6\\2x + y = 4\end{array} \right.\)

c) \(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Sử dụng các bước giải hệ của phương pháp cộng đại số để giải hệ.

Lời giải chi tiết

a) Do hệ số của \(x\) trong hai phương trình bằng nhau nên trừ từng vế hai phương trình của hệ, ta được:

\(\begin{array}{l}\left( {2x - 5y} \right) - \left( {2x - 7y} \right) = 8 - 0\\2x - 5y - 2x + 7y = 8\\2y = 8\\y = 4.\end{array}\)

Thay \(y = 4\) vào phương trình \(2x - 7y = 0\), ta có:

\(\begin{array}{l}2x - 7.4 = 0\\2x - 28 = 0\\2x = 28\\x = 14.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất là \(\left( {14;4} \right)\)

b) Nhân hai vế của phương trình thứ hai với 2, ta thu được hệ sau: \(\left\{ \begin{array}{l}4x + 3y = 6\\4x + 2y = 8\end{array} \right.\).

Trừ từng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {4x + 3y} \right) - \left( {4x + 2y} \right) = 6 - 8\\4x + 3y - 4x - 2y =  - 2\\y =  - 2.\end{array}\)

Thay \(y =  - 2\) vào phương trình \(2x + y = 4\), ta có:

\(\begin{array}{l}2x - 2 = 4\\2x = 6\\x = 3.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất là \(\left( {3; - 2} \right)\).

c) Nhân hai vế của phương trình thứ nhất với 4, ta thu được hệ sau: \(\left\{ \begin{array}{l}1,2x + 2y = 12\\1,5x - 2y = 1,5\end{array} \right.\)

Cộng tứng vế hai phương trình của hệ trên, ta được:

\(\begin{array}{l}\left( {1,2x + 2y} \right) + \left( {1,5x - 2y} \right) = 12 + 1,5\\1,2x + 2y + 1,5x - 2y = 13,5\\2,7x = 13,5\\x = 5.\end{array}\)

Thay \(x = 5\) vào phương trình \(1,5x - 2y = 1,5\), ta có:

\(\begin{array}{l}1,5.5 - 2y = 1,5\\7,5 - 2y = 1,5\\2y = 6\\y = 3.\end{array}\)

Vậy hệ đã cho có nghiệm duy nhất là \(\left( {5;3} \right)\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 1.11 trang 18 SGK Toán 9 tập 1 - Cùng khám phá

    Giải các hệ phương trình sau: a) \(\left\{ \begin{array}{l}2\left( {x + y} \right) + 3\left( {x - y} \right) = 4\\\left( {x + y} \right) + 2\left( {x - y} \right) = 5\end{array} \right.\) b) \(\left\{ \begin{array}{l}3\left( {x + 2y} \right) - 4\left( {2x - y} \right) = 5\\4\left( {x + 2y} \right) + 3\left( {2x - y} \right) = 15\end{array} \right.\)

  • Giải bài tập 1.12 trang 18 SGK Toán 9 tập 1 - Cùng khám phá

    Sử dụng máy tính cầm tay thích hợp, tìm nghiệm của mỗi hệ phương trình sau: a) \(\left\{ \begin{array}{l}11x - 13y = - 7\\7x + 19y = 2\end{array} \right.\) b) \(\left\{ \begin{array}{l}\frac{1}{8}x + \frac{3}{4}y = \frac{1}{{16}}\\ - \frac{4}{5}x + \frac{7}{5}y = \frac{1}{5}\end{array} \right.\) c) \(\left\{ \begin{array}{l}0,12x - 0,15y = - 2,4\\0,21x + 0,35y = - 3,6\end{array} \right.\)

  • Giải bài tập 1.13 trang 18 SGK Toán 9 tập 1 - Cùng khám phá

    Tìm các giá trị của \(m\) và \(n\) để đa thức sau bằng đa thức 0: \(P\left( x \right) = \left( {5m - 3n - 1} \right)x + m - 4n - 12\)

  • Giải bài tập 1.14 trang 18 SGK Toán 9 tập 1 - Cùng khám phá

    Xác định \(a\) và \(b\) để đồ thị của hàm số \(y = ax + b\) đi qua hai điểm \(A\) và \(B\) trong mỗi trường hợp sau: a) \(A\left( {3; - 2} \right)\) và \(B\left( { - 3;1} \right)\) b) \(A\left( {0;2} \right)\) và \(B\left( {\sqrt 3 ;2} \right)\)

  • Giải bài tập 1.9 trang 18 SGK Toán 9 tập 1 - Cùng khám phá

    Giải các hệ phương trình sau bằng phương pháp thế: a) \(\left\{ \begin{array}{l}7x + y = 19\\x + 7y = - 11\end{array} \right.\) b) \(\left\{ \begin{array}{l}x - 6y = - 3\\5x + 8y = 7\end{array} \right.\) c) \(\left\{ \begin{array}{l}x - 2y = 1\\ - 2x + 4y = - 2\end{array} \right.\)

>> Xem thêm

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí