Giải bài tập 1 trang 27 SGK Toán 12 tập 1 - Cánh diều>
Tiệm cận đứng của đồ thị hàm số \(y = \frac{{x + 2}}{{x + 1}}\) là: A. \(x = - 1\). B. \(x = - 2\). C. \(x = 1\). D. \(x = 2\).
Đề bài
Tiệm cận đứng của đồ thị hàm số \(y = \frac{{x + 2}}{{x + 1}}\) là:
A. \(x = - 1\).
B. \(x = - 2\).
C. \(x = 1\).
D. \(x = 2\).
Phương pháp giải - Xem chi tiết
Đường thẳng \(x = {x_o}\) được gọi là đường tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
\(\mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) = + \infty \) ,\(\mathop {\lim }\limits_{x \to x_o^ - } f\left( x \right) = - \infty \),\(\mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) = + \infty \),\(\mathop {\lim }\limits_{x \to x_o^ + } f\left( x \right) = - \infty \).
Lời giải chi tiết
Ta có: \(D = R\backslash \left\{ { - 1} \right\}\)
Xét \(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{x + 2}}{{x + 1}} = + \infty \).
Vậy đưởng thẳng \(x = - 1\) là tiệm cận đứng của đồ thị hàm số \(y = \frac{{x + 2}}{{x + 1}}\).
Chọn A
- Giải bài tập 2 trang 27 SGK Toán 12 tập 1 - Cánh diều
- Giải bài tập 3 trang 27 SGK Toán 12 tập 1 - Cánh diều
- Giải bài tập 4 trang 27 SGK Toán 12 tập 1 - Cánh diều
- Giải bài tập 5 trang 27 SGK Toán 12 tập 1 - Cánh diều
- Giải mục 2 trang 22, 23, 24 SGK Toán 12 tập 1 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục