Giải bài 8 trang 29 Chuyên đề học tập Toán 10 – Cánh diều


Cho tam giác đều màu xanh (Hình thứ nhất)

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho tam giác đều màu xanh (Hình thứ nhất)

a) Nêu quy luật chọn tam giác đều màu trắng ở Hình thứ hai

b) Nêu quy luật chọn các tam giác đều màu trắng ở Hình thứ ba

c) Nêu quy luật chọn các tam giác đều màu trắng từ Hình thứ tư và các tam giác đều màu trắng ở những hình sau đó.

d) Tính số tam giác đều màu xanh lần lượt trong các Hình thứ nhất, Hình thứ hai, Hình thứ ba.

e) Dự đoán số tam giác đều màu xanh trong Hình thứ n. Chứng minh kết quả đó banwggf phương pháp quy nạp toán học.


 

Lời giải chi tiết

a) Cách chọn tam giác đều màu trắng ở Hình thứ hai

Bước 1: Tìm trung điểm các cạnh => được 3 trung điểm

Bước 2: Tô màu trắng cho tam giác có 3 đỉnh là 3 trung điểm ấy.

b) Nêu quy luật chọn các tam giác đều màu trắng ở Hình thứ ba

Từ mỗi tam giác xanh của Hình thứ hai, ta thực hiện các bước:

Bước 1: Tìm trung điểm các cạnh => được 3 trung điểm

Bước 2: Tô màu trắng cho tam giác có 3 đỉnh là 3 trung điểm ấy.

c) Quy luật chọn các tam giác đều màu trắng từ Hình thứ tư và các tam giác đều màu trắng ở những hình sau đó.

Từ mỗi tam giác xanh của Hình thứ ba, ta thực hiện các bước:

Bước 1: Tìm trung điểm các cạnh => được 3 trung điểm

Bước 2: Tô màu trắng cho tam giác có 3 đỉnh là 3 trung điểm ấy.

Quy luật chọn các tam giác đều màu trắng ở hình thứ n đó:

Từ mỗi tam giác xanh của Hình thứ (n-1), ta thực hiện các bước:

Bước 1: Tìm trung điểm các cạnh => được 3 trung điểm

Bước 2: Tô màu trắng cho tam giác có 3 đỉnh là 3 trung điểm ấy.

d) Hình thứ nhất có 1 tam giác đều màu xanh

Hình thứ hai có 3 tam giác đều màu xanh

Hình thứ ba có 9 tam giác đều màu xanh

 

e) Vì Hình thứ nhất có \(1 = {3^0}\) tam giác đều màu xanh

Hình thứ hai có \(3 = {3^1}\) tam giác đều màu xanh

Hình thứ ba có \(9 = {3^2}\) tam giác đều màu xanh

Dự đoán Hình thứ n có \({3^{n - 1}}\) tam giác đều màu xanh

Chứng minh:

Bước 1: Khi \(n = 1\) ta có Hình thứ nhất có \({3^{1 - 1}}\) tam giác đều màu xanh, đúng.

Như vậy mệnh đề đúng với \(n = 1\)

Bước 2: Với k là một số nguyên dương tùy ý mà mệnh đề đúng, ta phải chứng minh mệnh đề đúng với k+1, tức là:

Hình thứ k+1 có \({3^{k + 1 - 1}}\) tam giác đều màu xanh

Hay “Hình thứ k+1 có \({3^k}\) tam giác đều màu xanh

Thật vậy, theo giả thiết quy nạp ta có:

Hình thứ k có \({3^{k - 1}}\) tam giác đều màu xanh

Nhận xét: Theo quy luật thì mỗi hình màu xanh sẽ được chia thành 4 tam giác đều ở hình sau, trong đó tô 1 tam giác đều màu trắng và 3 tam giác đều màu xanh. Nói cách khác, mỗi tam giác đều màu xanh sẽ chia thành 3 tam giác đều (nhỏ hơn) màu xanh ở hình tiếp theo.

Mà có \({3^{k - 1}}\) tam giác đều màu xanh

\( \Rightarrow \) Số tam giác đều màu xanh trong Hình thứ k+1 là: \({3.3^{k - 1}} = {3^{1 + k - 1}} = {3^k}\)

Vậy mệnh đề đúng với k+1. Do đó, theo nguyên lí quy nạp toán học, mệnh đề đúng với mọi \(n \in \mathbb{N}*\).

 


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí