Giải bài 8 trang 11 sách bài tập toán 11 - Cánh diều>
Cho \(\cot x = - 3\), \(\frac{\pi }{2} < x < \pi \). Tính \(\sin x\), \(\cos x\), \(\tan x\).
Đề bài
Cho \(\cot x = - 3\), \(\frac{\pi }{2} < x < \pi \). Tính \(\sin x\), \(\cos x\), \(\tan x\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(\tan x = \frac{1}{{\cot x}}\) để tính \(\tan x\).
Sử dụng công thức \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\) và điều kiện \(\frac{\pi }{2} < x < \pi \) để tính \(\sin x\).
Sử dụng công thức \(\cot x = \frac{{\cos x}}{{\sin x}}\) để tính \(\cos x\) theo \(\sin x\) và \(\cot x\).
Lời giải chi tiết
Ta có \(\tan x = \frac{1}{{\cot x}} = 1:\left( { - 3} \right) = - \frac{1}{3}\).
Do \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}} \Rightarrow {\sin ^2}x = \frac{1}{{1 + {{\cot }^2}x}} = \frac{1}{{1 + {{\left( { - 3} \right)}^2}}} = \frac{1}{{10}} \Rightarrow \sin x = \pm \frac{{\sqrt {10} }}{{10}}\)
Vì \(\frac{\pi }{2} < x < \pi \Rightarrow \sin x > 0 \Rightarrow \sin x = \frac{{\sqrt {10} }}{{10}}\).
Vì \(\cot x = \frac{{\cos x}}{{\sin x}} \Rightarrow \cos x = \cot x.\sin x = - 3.\frac{{\sqrt {10} }}{{10}} = - \frac{{3\sqrt {10} }}{{10}}\).
- Giải bài 9 trang 11 sách bài tập toán 11 - Cánh diều
- Giải bài 10 trang 11 sách bài tập toán 11 - Cánh diều
- Giải bài 11 trang 11 sách bài tập toán 11 - Cánh diều
- Giải bài 12 trang 11 sách bài tập toán 11 - Cánh diều
- Giải bài 13 trang 11 sách bài tập toán 11 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục