Giải bài 65 trang 69 sách bài tập toán 12 - Cánh diều>
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai mặt phẳng (left( {{P_1}} right):x + 4y - 2z + 2 = 0,left( {{P_2}} right): - 2x + y + z + 3 = 0). a) Vectơ (overrightarrow {{n_1}} = left( {1;4; - 2} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_1}} right)). b) Vectơ (overrightarrow {{n_2}} = left( {2;1;1} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_2}} right)). c) (overrightarrow {{n_1}} .overrightarrow {{n_2}}
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho hai mặt phẳng \(\left( {{P_1}} \right):x + 4y - 2z + 2 = 0,\left( {{P_2}} \right): - 2x + y + z + 3 = 0\).
a) Vectơ \(\overrightarrow {{n_1}} = \left( {1;4; - 2} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right)\).
b) Vectơ \(\overrightarrow {{n_2}} = \left( {2;1;1} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_2}} \right)\).
c) \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0\) với \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) lần lượt là vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).
d) Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) vuông góc với nhau.
Phương pháp giải - Xem chi tiết
Mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\) nhận \(\overrightarrow n = \left( {A,B,C} \right)\) làm vectơ pháp tuyến.
Lời giải chi tiết
Mặt phẳng \(\left( {{P_1}} \right):x + 4y - 2z + 2 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {1;4; - 2} \right)\). Vậy a) đúng.
Mặt phẳng \(\left( {{P_2}} \right): - 2x + y + z + 3 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( { - 2;1;1} \right) \ne \left( {2;1;1} \right)\). Vậy b) sai.
\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.\left( { - 2} \right) + 4.1 + \left( { - 2} \right).1 = 0\). Vậy c) đúng.
Vì \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0\) nên \(\overrightarrow {{n_1}} \bot \overrightarrow {{n_2}} \). Do đó hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) vuông góc với nhau. Vậy d) đúng.
a) Đ.
b) S.
c) Đ.
d) Đ.
- Giải bài 66 trang 69 sách bài tập toán 12 - Cánh diều
- Giải bài 67 trang 69 sách bài tập toán 12 - Cánh diều
- Giải bài 68 trang 70 sách bài tập toán 12 - Cánh diều
- Giải bài 69 trang 70 sách bài tập toán 12 - Cánh diều
- Giải bài 70 trang 70 sách bài tập toán 12 - Cánh diều
>> Xem thêm