Giải bài 6.26 trang 14 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Ta định nghĩa các hàṃ sin hyperbolic và hàm côsin hyperbolic

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Ta định nghĩa các hàṃ sin hyperbolic và hàm côsin hyperbolic như sau: \({\rm{sinh}}x = \frac{1}{2}\left( {{e^x} - {e^{ - x}}} \right);{\rm{cosh}}x = \frac{1}{2}\left( {{e^x} + {e^{ - x}}} \right)\)

Chứng minh rằng:

a) \({\rm{sinh}}x\) là hàm số lẻ:;

b) \({\rm{cosh}}x\) là hàm số chẵn;

c) \({({\rm{cosh}}x)^2} - {({\rm{sinh}}x)^2} = 1\) với mọi \(x\).

Phương pháp giải - Xem chi tiết

Áp dụng định nghĩa hàm lẻ, hàm chẵn

Hàm số \(y = f(x)\) có tập xác định \(D\)

Hàm số \(y = f(x)\) là hàm số lẻ trên \(D \Leftrightarrow \left\{ \begin{array}{l}\forall x \in D \Rightarrow  - x \in D\\f\left( { - x} \right) =  - f\left( x \right)\end{array} \right.\)

Hàm số \(y = f(x)\) là hàm số  chẵn trên \(D \Leftrightarrow \left\{ \begin{array}{l}\forall x \in D \Rightarrow  - x \in D\\f\left( { - x} \right) = f\left( x \right)\end{array} \right.\)

Lời giải chi tiết

a) Hàm số \(f\left( x \right) = {\rm{sinh}}x\) có tập xác định \(D = \mathbb{R}\)

Ta có \(\forall x \in D \Rightarrow  - x \in D\)

\(f\left( x \right) = {\rm{sinh}}x = \frac{1}{2}\left( {{e^x} - {e^{ - x}}} \right) \Rightarrow f\left( { - x} \right) = \frac{1}{2}\left( {{e^{ - x}} - {e^x}} \right) =  - f\left( x \right),\forall x \in \mathbb{R}\).

 Do đó, sinh\(x\) là hàm số lẻ.

b) Hàm số \(g\left( x \right) = {\rm{cosh}}x\) có tập xác định \(D = \mathbb{R}\)

Ta có \(\forall x \in D \Rightarrow  - x \in D\)

\(g\left( x \right) = {\rm{cosh}}x = \frac{1}{2}\left( {{e^x} + {e^{ - x}}} \right) \Rightarrow g\left( { - x} \right) = \frac{1}{2}\left( {{e^{ - x}} + {e^x}} \right) = g\left( x \right),\forall x \in \mathbb{R}\).

Do đó, \({\rm{cosh}}x\) là hàm số chẵn.

c) Ta có: \({({\rm{cosh}}x)^2} - {({\rm{sinh}}x)^2} = \frac{1}{4}{\left( {{e^x} + {e^{ - x}}} \right)^2} - \frac{1}{4}{\left( {{e^x} - {e^{ - x}}} \right)^2} = \frac{1}{4} \cdot 2{e^{ - x}} \cdot 2{e^x} = 1\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí