Giải bài 6.12 trang 7 sách bài tập toán 8 - Kết nối tri thức với cuộc sống


Tìm mẫu thức chung của ba phân thức sau: \(\frac{1}{{{x^2} - x}};\frac{x}{{1 - {x^3}}}\) và \(\frac{{ - 1}}{{{x^2} + x + 1}}\)

Đề bài

Tìm mẫu thức chung của ba phân thức sau: \(\frac{1}{{{x^2} - x}};\frac{x}{{1 - {x^3}}}\) và \(\frac{{ - 1}}{{{x^2} + x + 1}}\)

Quy đồng mẫu thức ba phân thức đã cho với mẫu thức chung tìm được

Phương pháp giải - Xem chi tiết

Tìm mẫu thức chung của ba phân thức sau: \(\frac{1}{{{x^2} - x}};\frac{x}{{1 - {x^3}}}\) và \(\frac{{ - 1}}{{{x^2} + x + 1}}\)

Quy đồng mẫu thức ba phân thức đã cho với mẫu thức chung tìm được

Lời giải chi tiết

Ta có: \({x^2} - x = x\left( {x - 1} \right);1 - {x^3} =  - \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\)

MTC =\(x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\)

Do đó, \(\frac{1}{{{x^2} - x}} = \frac{{{x^2} + x + 1}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}};\frac{x}{{1 - {x^3}}} = \frac{{ - {x^2}}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)

\(\frac{{ - 1}}{{{x^2} + x + 1}} = \frac{{ - x\left( {x - 1} \right)}}{{x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\)


Bình chọn:
4.3 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí